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FOREWORD

The domain of statistical physics has extended from the traditional
problems In quantum mechanics, the solid states and the kinetic theory of
gases to other nonlinear problems in hydrodynamics, plasmas and optical
systems, for which we need to consider the fluctuation effects. Concep-
tually, i1t has been found very helpful to view these statistical problems
from a basic physical point of view which emphasizes their structural
similarity.

The study of stochastic systems has developed in two directions. First,
the transition from a laminar state to a chaotic or turbulent state through a
sequence of bifurcations shows a certain universality (see '"Chaos and Univer-
sality,” Nordita Selection, 1981). Secondly, when the system has reached a
state of fully developed chaos or strong turbulence, the statistical methods
used for their theoretical analysis find again a certain universality. A
proper understanding of the many basic phenomena in astrophysics, space,
atmospherical and optical applications depends critically on our ability to
analyze the turbulent characteristics and the collective processes iIn these
nonlinear systems. The lack of a suitable methods of treatment and the dif-
ficulties encountered even for the simplest form of incompressible, homo-
geneous and isotropic turbulence, have hindered the theoretical development
of strong turbulence.

From the physical point of view, a turbulent state is characterized by

its transport properties: eddy diffusivity, eddy viscosity, coefficient of
damping, or amplification. Their analytical determination requires a trans-
port theory. The kinetic method is best suited for this purpose. The eddy
transport coefficients, as induced by the fluctuations of small scales, govern
the evolution of larger scales. This requirement of scaling leads to the con-
cept of renormalization groups, from which we develop the group-kinetic method
of turbulence. We have applied the method to problems of atmospheric turbulence.

The group-kinetic method combines the advantages of the kinetic method and
the group-scaling. The Kinetic description has the advantage of transforming
the system of hydrodynamical equations that govern a nonlinear stochastic system
into a master equation of lesser nonlinearity. The group-scaling enables the
determination of the transport properties and the spectral structure by the
one-point distribution function alone, without involving the two-point distri-
bution. Our closure is obtained by a memory loss in the relaxation process and
not by truncation of the infinite hierarchy of n-point distribution functions or
correlation functions.

The six verbatim sections include research accomplished during the second
year, September 1, 1982 through August 31, 1983, of this two-year contractual
effort.
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SECTION 1

General Considerations on the Group-Kinetic Theory of Turbulence

B _ PRINCIPLE OF THE GROUP-KINETIC THEORY

The Navier-Stokes equation of motion with external and self-consistent

forces is transformed into a master equation
A N
(Dt + Lft,x,v) = 0,
”n . .
for the distribution function f(t,x,v) of velocity v ,with the equivalence
VWA v “w
relation
g A
f(t,x,v) =)0 [v - u(t,x)] -
A 4 ~— v L)
that is valid for a constant or variable density f, and for a fluctuating
N
fluid velocity G(t,x). Here L is the differential operator for the perturbation

of the trajectory in the phase space.

The total distribution function

A — nt
f = f + f

- A ~
consists of a mean distribution f = <f> and a fluctuation f . The usual

Fourier decomposition of a fluctuating function contains too many minute details,
and a coarse-graining procedure is necessary. |In analogy with the "renormalization

~

groups”, we decompose f into groups

€, £ ,

of decreasing coherence, representative of the spectral evolution, eddy diffusivity,
and relaxation, respectively. By formulating the relaxation as a functional of
the diffusivity, we obtain a closure.

The group-scaling has the advantage of determining the spectrum from the
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singlet distribution function alone, without involving the 2-point distribution
function as is required in the conventional methods of statistical mechanics.

o

The kinetic equation is derived for - . It takes the generalized form

of the 'Fokker-Planck equation, with the diffusivity g'{}» as an integral

operator to represent the memory and the collective behavior. 1t is converted
into the hydrodynamic equation in the group form, from which we determine the
eddy viscosity

K* [F(k), parameters]

and calculate the spectral function F(k). The parameters include the Coriolis

field and the length of stability from shear and buoyancy.

11. SPECTRAL DISTRIBUTION OF TURBULENCE

A The application of the group-kinetic method to the Navier-Stokes
equation of motion finds the direct and reverse cascades for the transfer across

a spectrum, and derives the spectral distributions in inertia (k-5/3), shear

(k—1), and geostrophic turbulence (k-3 and k_4). In boundary layer turbulence,
the spectra of velocity fluctuations in separate directions can be treated,
and a spectral gap in the stable boundary layer is expected.

B. The extensions to the Zakharov equations, the nonlinear Schrodinger
equation and the Korteweg-deVries equation are important for analyzing the new

dynamical characteristics and transport properties of soliton turbulence in fluids,

plasmas and solid, and the self-focusing in optical turbulence.

II1I. NUMERICAL MODELING

The kinetic equation for T and its conversion into fluid representation

forms the basis for the modeling and prediction of turbulent profiles and



1-3

spectra in the turbulent boundary layer. Here the transport coefficients become
explicit functions of ¢ X and the governing parameters, once the spectral
laws are analytically determined by our group-kinetic theory. The pressure-
velocify correlation is also analytically derived.

Our first aim in the modeling of turbulence is to provide an analytical
basis for the Monin-Obukhoff similarity by determining the structure of the
universal functions. Then, we can devise a pew numerical modeling which will

incorporates the effects of scales, the collective behavior and the memory.

V.  ATMOSPHERIC BOUNDARY LAYER

V¢ can divide the turbulent atmospheric boundary layer into:
A The lower boundary layer, or surface layer
B. The upper boundary layer which includes the free-convection layer,
the mixed layer, and the Ekman layer.
The gyrface layer extends from the ground up to a height of less than 100 meters,
and is characterized by the constant fluxes of momentum, temperature and
humidity. The main tasks are the prediction of profiles and spectra by analytically
determining the universal functions that could not be determined by the empirical
similarity theory of Monin and Obukhoff.
The upper layer contains the additional effect of the Coriolis force,

which enters into the differential operator in perturbing the trajectory.

The above division of the atmospheric turbulence into two parts, as
dependent on the absence or presence of the Coriolis field, is analogous to
the classification of plasma turbulence into two parts: the Langmuir

turbulence (i.e. without magnetic field) and the magnetized plasma turbulence.



SECTION 2

Group-Kinetic Theory of Two-Dimensional Geostrophic Turbulence

C. M Tchen
The City College and The Graduate Center
of The City University of New York, N. U. 10031

ABSTRACT

The two-dimensional geostrophic turbulence driven by a random
force 1s investigated. On the basis of the Liouville equation which
simulates the primitive hydrodynamical equations, we develop a group~
kinetic theory of turbulence and derive the kinetic equation of the
scaled singlet distribution. This distribution will suffice for the
investigation of the spectrum of turbulence, without having to resort
o the pair-distribution as was with the usual kinetic theories. The
collision integral has a memory and describes the pair interaction and
its enhancement by the multiple interaction.

Our kinetic equation of turbulence is transformed Into an
equation of spectral balance In the equilibrium and non-equilibrium
states, as govermed by the direct cascade and the reverse cascade,
respectively. The sequence of power laws 3, Kt of velocity fluctuations
are derived.

2-1
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1. INTRODUCTION

The two-dimensional geostrophic turbulence has attracted much attention
(Fjpreofr, 1953; Charney, 1971; Rhines, 1979 ] . Theories based upon the
diffusion approximation ( Leith, 1968] » the spectral properties [Novikov

1979], the direct interaction approximation [Kraichnan, 1967, 1971la,b ;
Pouquet et al., 1975; Salmon et al., 1978] , and numerical modeling and
sinulations [ Lilly, 1969a,b, Basdevant et al., 1973] have found a spectral
k™3 . This spectrum changes into k™% if the geostrophic turbulence is

driven by a random force [ saffman, 1971; Thompson, 1973] . Deviations from
these laws have also been discussed [ Gage, 1979 ]. The sequence of appearance
of the spectra K3 , 4 , and the dynamics of the direct and reverse
cascade were analytically v2g4¢  jn the lack of a generalized statistical
theory of the geostrophic turbulence driven by a random force.

Our investigation is divided into two parts. The first part develops a
group-kinetic theory on the basis of our earlier scaling procedure [Tchen, 1978,
1979] , and derives the kinetic equation of turbulence. Usually the analysis
of the spectral structure requires erther a pair-distribution function or a
detailed Fourier decomposition. These are not needed here, because of the
scaling procedure mentioned. Our kinetic approach has the advantage of not
only including the random force in our homogeneous Liouville equation, but also
of describing the interaction between the wave and the fluid particle, as
characteristical of the large scale turbulence. The collective collision
obtained will include the memory, the pair-collision and the multiple
collision [Tchen and Misguich,1932] . The latter effect is essential and
will be applied to the treatment of the reverse cascade that iIs often found
with the large scale turbulence.

With the kinetic foundation described above, the kinetic equation of
turbulence iIs transformed into its hydrodynamical form, and is used to
develop the spectral theory of geostrophic turbulence iIn the second part of
this paper. The two parts are separately self-consistent and can be read

independently.
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11. MICRODYNAMICAL STATE OF TURBULENCE
The Navier-Stokes equation of motion
Erorh € - E »
of an incompressible fluid satisfies the condition
v-ﬁ = 0 . (2
By taking the curl, we obtain the vorticity

&)

i<

= VX

-~

YA 3N

and transform (1) into the following vorticity equation of the two-dimensional
geostrophic turbulence:

A ~

(0, + 8-V -9VHL=VxE . O

Here we have
~ A

/H‘ = (ul’ uzn 0) and C=(0, O’t)- (5)
The field

~ a A

E = ﬂEP “‘Ex (6)

+

has two components. The component

B=-Lys , %

which is the gradient of pressure P at a constant density f y s not
present in the vorticity equation (3) , because

VxE =-ixgp = 0 . (®

[
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The other component §x forms a finite vorticity source YXE:\X .

The equations (1), (2) and (4) describe the microdynamical state of
turbulence, and are used as the point of departure of our statistical
treatment. In our transport theory by eddies larger than the viscous cutoff,
the effect of the kinematic viscosity will be neglected, but will be
restituted in the spectral balance where the viscosity gives a molecular
dissipation.

For the development of a kinetic method, we write the microkinetic

equation in the form of the Liouville equation:
~ A .
[Bt + L(t)] f(trx;&') = 0, 9
with the differential operator

L) = vov+ B0, d=2hy - (10)

"

The detailed distribution function ? is normalized to unity, as

dv ?(t,f,z) = 1, (11)
and assumes the form

Y =S[y-ten ], (12)

in order to be consistent with the Navier-Stokes equation (1) and the
equation of continuity (2). It is not difficult to show by taking the first
two moments, that the Liouville equation will reproduce the two hydrodynamical
equations () and (2). The Liouville equation is homogeneous and has less
nonlinear terms than does the Navier-Stokes equation, because the function
g_(t,x) of velocity of fluid is replaced by an independent variable Vo

We re?ain the only nonlinear term B Df in order to describe the

. .

mode-couplings.
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III. GROUP-SCALING PROCEDURE

The Liouville equation (9) contains too many minute details which are
unncessary for a statistical treatment of turbulence. We apply a scaling
procedure by dividing the detailed distribution

La) - ~

f=£f+f (13)
into a mean distribution £ and a fluctuation f , and the fluctuation

4 o}

f = £ + f' (14)

into a macro-group £° and a micro—-group f' . The function F(t,}_g,x)
gives the distribution of velocity in non-equilibrium. The macro-group £°
calculates the spectrum of turbulence'without the need of developing a
separate kinetic equation of the pair-distribution function <nf :fv) « In the
following, we develop a kinetic equation of the macro-group £9 and
investigate the spectrum of turbulence.

The evolution of the macro-group is controlled by the transport
property as shaped by the fluctuations of the micro-group, while the
approach of the transport property to equilibrium is obtained by the
relaxation. These three transport processes of evolution, transport
property and relaxation are represented by the three groups

£, f, £
of the distribution function, or by the three groups

E°, E , E
of the field. The interactions between the groups are described by a
coupled system of equations.

The groups have their time scales characterized by the correlation
times

Ty " (153)
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For formulating the transport coefficients, the correlations, as given by
the groups E'(t-T ), §3(1:-'c'), are integrated with respect to T and

T’ in therﬁomains @, t), (0,7 ), respectively, so that the evolution
times t ,<, T "can be ranged among the correlation times (15a) , in the
fol lowing manner :

” ’
toe/»Tt >t >T’ (15b)

The degradation of coherence (15) will constitute a property of
guasi-stationarity of one group with respect to the other.
The individual fluctuating groups

O ' N ]
u , u', u
"

- L

can be decomposed into Fourier components with overlapping wavenumbers. But the
global averages, g g,

@ L L Ke?)

“

are deterministic, and are separated by their adjacent wavenumber domains
(0,x) , (ko) , (k'2 k,0) (16)
with k, k' varying fron O to¢o .
For the sake of convenience, we introduce the scaling operators
A, A% , A, A (17a)

A =% + 2% K=1-% a@apr _an, (17b)
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V. SCALING OF THE LIOWILLE EQUATIONS

By applying the operators A° and A to scale the Liouville equation

(9), we obtain the system of coupled equations:
(. + A% = - 1°F + ¢®, with ¢® = - A%L's!
(> e = - L'E T C
The second equation of the system may be equivalently replaced by
(v, taDE = -LiE .

Upon integrating (19) and (20), we have

t Fad
£ = - A'/ dT Ok, t-T) L' (=T ) £ (tT)
0

t A
- A'f dT U(t,t-T) Co(t-T),
0
and

. o A - s .
fooa - A'f deA(e, et) L (¢ t,)fo(f T)

Here /f] and/’\‘ are evolution operators as related to the differential
operators 1 and A'I: respectively. The initialvalue £'(0) has been
neglected, since it cannot produce a finite correlation A%L'(t)£'(0)
at large t , by (15).

Subsequently, we prernultiply (21) and (22) by -A°L'  to find the
collision in the following two forms:

t
c’=C°+ A°/dr L'(£) U'(t,t-T) G (t=T)
0
=C° - A% 8% ¢, ,with #® = -a"L'(O)U'(E,E-T)

(18)

(19)

(20)

(21)

(22)

(23)
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©°=a°a { 200 | (24)
The collective collision ¢° is seen to consist of o parts: The pair
collision

C°= »° A'{f°(t-t)} , (25)

from the correlation between two micro-fields AOL’A’GL' , IS propcrtional
to A"+ The multiple collision, from the correlation AOL‘U'CO between
a micro-field and the cluster of the organized micro-fluctuations, iIs
proportional o &’% .

The governing collision operators

¥

A°A = 2° / dT L @A O(L,e-D)L' (£-T)
0
= 2. A4°D" 2 (26a)
’ t "
A4 = A°fd1; LT (E)A'N (£, t~T)L" (t-T)
0
- 3:A'DYD (26b)

are defined by the diffusivities

, t
A’ = Aofd‘(: E'(t)A'I?(t,t—t)&’(t-C) (27a)
= 0
- . i
A%t = A° /d'c E'(e)A'A (£, t-T)E' (¢t-T ) (27b)
> 0

which themselves may serve as operators. In (Z) we have replaced
AL (DA(E, eTIC (e-T) by AL (U (£,£D)C (£-T)

without loss of generality.
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The operator ﬁ(t,t-t), with t' = t-7 , is governed by the Liouville
equations:
EaY A
[>y +LO] Vet = 0 (28a)
[)t' - i‘.(t')] fl(t,t') = 0 . (28b)

The operator A is related to U , and the relation has been developed
by Weinstock [1969] .

By scaling (28a) by means of A" , we obtain the kinetic equation
(9, +L )0 =-1% + ®° , (29)

with the collisions

Bo(t,t") = A° A'{u°(t,t'.)} (30a)

Ho(t,t') - A°A'{u°(:,t')}v , (30b)
as related by .

B°=H - a%8°% 1° , (30c)

in analogy with (23) - (25).
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V. PROPAGATOR AND PROBABILITY OF RETROGRADE TRANSITION

The Liouville equations (9) and () which govemn 1'é and fJ‘ have
the same differential operator 1 , and therefore the same characteristic
equations goveming the dynamical variables in the form

k(') (e
= = wv(t') , = E(t") , (31a)
dt! - de! -
or equivalently,
%R th
7 = Ee) (31b)
dt! -
with the conditions
Q) = x, W) =v, (31c)

by the nature of the differential equation of the second degree, where

x and vy are two_independent variables. The values (31c) will be called
the "initial conditions' in the retrograde transition fron t © t! .

By a change of variables

2=y = x = A@) , vie-t) = v - V), T=t-t', (32a)

na

we can write the characteristic equations in the integral form

- T )

Ay = j 49 (e-D) (32b)

an 0 M

Pal T S 7

V(T) =fdt’§(t-t y . (32¢)
"0

Note that %(t-t) from (32a) can be rewritten as

wer) = Aol o]
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or as
A
X(e-T) =% [t-r,x-/?(r).]
LS - o
in the Lagrangian representation, with

‘a (T l t,x) replaced by E(";)

for the sake of brevity, 'l'he vertical bar in (t,x denotes that the
Lagrangian displacement ,E(-c) was made during a time interval T along
the trajectory that passeg by the point ¥ at the time instant t.
The systems (31) and (32) are called the equations of the path
dynamics in the differential form and the integral form, respectively.
Both forms equally describe the trajectory of a fluid particle which
occupies the position g(t') at the time instant t' , provided
the trajectory passes by the point X at the instant t while having
a velocity v . -
It is to be stipulated that the essential function of the propagator
f! is to impose a Lagrangian representation of the function, say T as
in (27a), in the form -

A A -~ ”

E e, Xen) = e, enRen, (33a)
following the trajectory that is determined by the differential path
dynamics (31).

Alternatively, with the path dynamics (32), the Lagrangian
representation can be obtained in the integral form

E [t-’c ,x—B{t)]= fd@ E(t-—'L',x—ﬂ ) ?(t—'C,x—ﬂit,x), (33b)
ey Al ~  wA v o ey

by using the probability density

et xRlew (34)

The integral relation is written for the purpose of transforming the
Lagrangian function into the Eulerian function.

A
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The probability density satisfies the condition of normalization

/d@? -1. (35)

The density (34a) defines the probability
P(t-T ,x—l lt,f) djﬁ:

for the fluid particle to occupies a position between
:i—,e and ::—(£+dg)

at the time instant t-T , provided it follows the trajectory which

passes by the point x at the time t. For the retrograde transition to be
specified by the integral path dynamics of z(t}, as given by (32), we

write [Tchen, 1944] -

p(t-T, X'l‘ t,x) :Sﬂ'b(t-—tyl C,X)},

Y e v

or briefly

/1\:(1:,&) = 5[&*@*’)} - (36)

The abbreviated form indicates a quasi-stationarity of p in the t,x
space, so that the Liouville equation can be written in the form:

[ N +£ (t-T )] %(t:c,x—,g | 6% =0, (372)

with the differential operator
(e = -3eny, =] . (37b)

It is not difficult to show by moments that (37a), together with (36),
will reproduce the integral path dynamics with the initial velocity

v that is a random variable having a distribution ?(t”.‘..’v) . By
definition (12), v can be identified as Cl(t,'x) in the r;turn to the

“n 1%
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micro-hydrodynamical description. Thus the Lagrangian representation (33a)
by means of the propagator /I}(t,t') is straight forwardly kinetic. On the
other hand, the Lagrangian representation (33b) by means of the probability
/5(7:',9) is valid in both the fluid and kinetic descriptions. In the former,
the ir?itial velocity is '}:{(t,}i), and the Liouville equation (37a) becomes
dissociated from the distribution ?(t,}i,v). In the latter, although the
initial velocity v is not directly involved as a variable in the
probability density p(r ,0 ) , it is implicit in the path dynamics through
the distribution ?(t,f,v):‘ so that the same Liouville equation can be
copsidered as an equatio?l of a kinetic significance in the contracted
dimensionality, i.e. in the sense that the governing path dynamics requires
an initial velocity to be determined kinetically. The contracted dimensionality
gives to the Liouville equation a simpler differential operator that is
independent of K and therefore a simpler Fourier transformation.

In the following, we shall exploit this advantage of the contracted
dimensionality by using the probability of transition in transforming a
Lagrangian function, e.g. (33a), into an Eulerian function, e.g. (33b).
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VI. MEMORY IN THE COLLECTIVE COLLISION

The problem of the derivation of the collective collision ¢® in
terms of the pair collision C® involves the solution of the coupled
integral equations (B) and (30), and the treatment of the Lagrangian
functions associated with the propagator and 1ts collision, from ()
and (30b). The problem is complicated. We shall make the simplification
by separating the chain of correlations (15b) Into two sections

t 7'Ec' >T (38a)

and

Ve

4
T77T >T, (38b)

referring t the processes of transport coefficient, i,e. diffusivity,
and relaxation, i.e. propagator, respectively. The first section which
has a correlation of long duration shall preserve its memory, while the
correlation of the second section which has a short duration should not
propagates 1ts memory beyond the time span T and exert an effect on the
evolution of f°(t,§,z) ,

With this memory-loss we simplify the equations of collisions (23)
and (309) Into the system of equations

©C=C - H¥*c° (39a)
H=a) v, (39b)

which we can combine Into
] ’ —
@ =C-A)Txc . (40)

It leaves the Lagrangian-Eulerian transformation by the method of the
transition probability, as follows:

H*c®«a)7T % c°
t
(&) f arjal E(r,g) (et ,f-}i). (41)
0
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VW see the transformation
(e, t-T) Oe-T) = f al 3@ Cerx-d)

from (33b), in which the kinetics of T as governed by (29) is replaced
by the dynamics of P as governed by (37a). Note that

o p -

C’ H ’ <&)’ U
are in the t,x,v space. On the other hand, in the T ,,Q space, 'fS(t,,Q)
does not carry v , except in the path dynamics as an initial condition.

Further simplification is obtained by a Fourier transformation of
(41) into

T ®= @A) @300 c (@K = ~-K@D CWr), (422
with
. Q©
X (W) = @O [glei@-k-=) 1T, k) (42b)

in d-dimensions, so that tif integral equation (40) 1is transformed into the
form

@,k =C° @k +% @K W,k ,
or, by collecting c®,
@,k = ﬁ(w,w C’ k) , (43)

with
B = |1 -Kww|™ . (44)

The probability function' P(<,]) is determined by the following
differential equation of evolution:

3 F = Yy' 4 6‘5{1:)}3? , (45)

that is scaled from the Liouville equation

+L )P =0 (46)

Bt
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with a fluctuating differential operator. We find the solution:
-c ~
P(3,k) = exp [- sz ae (g(x )>] , (47)
- 0

From the path dynamics (32), we find

(Rry TPy
=72 [ &) + <m'€c)}] ; (48)

and ﬂwatQD‘ (v)> is asymptotic ad <ID°(1:)> is not asymptotic in the
evolution of B(z,]) from (43),

Now we can calculate from (42b), by substituting for 7 from @).
We find that

PR
R@Wo = @ Mo (49a)
with _
& - &1”' b, - ' (49b)
is controlled by the memory-loss function
-3
» . Qe -%t“?—'m"’z'r"‘
Mlag)=[ e " =" e , (500
0
which determines the life-time of memory in the form
s
T = (50b)
y =M
The characteristic frequencies are
’ N, 2.1/3 0/0,7.,02\.2.1/4
(L:A)— E-y R G)p =(c<lD)k ) s m:Q.‘. <E )k ) ’ 51a)

and the numerical coefficients are

¢ =Tle' c=(u/nY3 | 0 s/t (51b)
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As seen from (43) and (44), the collective collision c® is
related to the pair collision C° by a factor/3 , Which can be rewritten
as

~|
ﬁ("";é} = (:(I" D‘I)z + “zz.] , (51)

in terms of the real and imaginary parts of 8§ , by (49). Hence the
determination of (51) rests on the calculation of the memory integral
(508) and its decomposition into its real and imaginary parts. The
calculation is made by an interpolation over the three regions dominated
’ [s] .

by {4 » lJD and m” , separately. The results are given as follows:

(a) For weak turbulence, i.e. {a > %’,m" , we find a shielding
in the collision by a factor

B I~2c°((%:/a)3:!. I (52)

' [} )
(b) For strong turbulence, 1.e. .Q,« ‘%’, m ,we find an
enhancement in the collision by a factor

(3 ¥ 1251, if n°K wp’ (53a)

’ ~ N /
‘_1 + 2,77 («-{D/m°)3_ 1,if =° D 6% . (53b)

W can approximate/g by its constant asymptotic values which are :

(a) weak turbulence, » 601; . m

B ~1, (54a)
(b) strong turbulence, 11 & C‘):D', /u.o
A= [‘1, for %«b’o (large K) © (54b)

2.51, for (,:;’;;)p,o(small K) =« (54c)
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It entails the simplification

Cexm ¥ B Clexn (55)

- A

01: (43') ]
vi1, SPECTRAL BALANCE

The kinetic eqution (8) of t° , rewritten as

()t +4%L)€° = - L% + ¢° (56)
has a collective collision which can be written as

c® s@(@'}-sz%t-‘n} , (57)

with a diffusivity found by (53b) .,

Consider now a homogeneous turbulence, i.e, with '12 = 0, E= 0.
By taking the first moment of the kinetic equation (35), we obtain the
following equation of macro-momentum:

(0, +2° 7o = + Q° (58)
with a collision

Q° = 3}(11{ v >2{p°)- 2 { f°(t-t)} , (59)
by (57), Subsequently,-we take ﬂ?le curl of (B) and (59), 1O obtain the

following equation of macro-vorticity of the two-dimensional geostrophic
turbullence:

o 1]
(}t+2°'y-vyz);°-fxf +vxQ (60)

Finally, upon multiplying () byc" and averaging, we find the equation of
spectral balance in the form: -
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2“};5@02) = - 7; - f; | (61)

with the following transport functions:

o - °
cascade tranfer T. = (é’ . VXQ ) (62a)
] YT
molecular dissipation £ = ?<(7§ )) (62b)
g -
Note that the field
o - [¢] (0]
Eeh vtk

consists of two parts: The first part has a zero vorticity by (8), and
the second part, which is a random source, does not correlate with QO .
Thus the field go does not appear in the spectral balance in the form of
the correlation (2;?E°) » But it governs the collision

-

) 0.
= QP +Qx R (63a)

A L

(¢}

Q

-

with

Qe° = | av v3(Dy )?b{fo(t-’t)}r, & f av X).@;{ >->{f°(t—'ﬁ)}« , (63b)
- e - i - . an - -
through the diffusivities
(> =) L (63¢)
P X
o a-.. ™
Dy faney et e el
= | dt/E " (t, SE=T)E_ ' (£-T ) ‘xjdt‘ E ' (t,x) AUk, t-T)E ' (t=T)) . (63d)
Dy [oxy e niny TPy o0l cmag

By separating the collision into two parts as in {63a), we find the
transfer function also separated into two parts, as follows:

'r; = 0+ 10 (64a)

Tpo =G> VX &%) » T° =<§’°.Zx Qx°) . (64b)

In the following, we shall follow the same method of treatment of

with
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the transfer function as developed earlier by Tchen (1981] - As notations

we introduce the spectral functions Fu(k) and F;(k) , and the spectral
density <sx'(k)> , such that

@ =2 f dc F k"), (e°P= 2f gk'h”s_ ), &= (.1/ a' (5, ('), (650)
0 0 -

and the second spectral moments

o k 2 o k 2
R"™ = 2/ dk' k'" F (k"), R, = 2[ dk' k' Fu(k'), (65b)
¢ 0 g
with the relationship
-1,2
F (k) =d k Fu(k), (65¢)

g

by definition (3) in d=2 dimensions. By omitting the details of calculation,
we find the results as follows:
(a) Cascade-transfer by the E, - fluctuations

P
The transfer function is obtained in the form:

° , for large k (66a)

o { ﬁc&u' R;_

£ nu'<z;°2), for small k . (66b)

The coefficient {3 represents the effect of the multiple collision (54).
The transfer function is seen to be governed by the eddy viscosity

@ 4 1/2 2. ) -1
(kD= %f dk' Fu(k"){[_q_—-é‘z h N DY B K, ‘S
k

which has an asymptotic value
ree)
<u<u1> “Ffdk" (Fu(k")/k"s ) 1/2 67)
R

for large k , and by the rate of damping
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2y N

with L)

<ﬂ<U') <M> [ fdk" K2 g (k”)] 1/2 (69a)

for small k « Note that (69a) is the solution of

F (k")
(K. l 5

The asymptotic formulas (67) and (69a) agree with our earlier cascade
theory [Tchen, 1973, 1978] and other dimensional theories
[Heisenberg, 1048; Gisina, 1969 ] .

(b) Cascade-transfer by By = fluctuations

e d

The transfer function is obtained in the form

TXo ';{F(k};)R; , for large k (70a)
lﬂﬂ( z) for small k (70b)

and is governed by the eddy viscosity
(K- Jawr (sgam) eaen (72)
for large k, and the rate coefficient of damping
a’ - j aw 1% (o' (D G (72)
X ~ £, ~
for small k .« Here the modulation function

G(kE [—L [(Z)s°an +2 1/3&)(k")J (% = 0.919 (73)

is characterized by the two frequencies as fqllows:

0/ 1 u o« o, % lrin " ! Lhu
W{yfur e, GO oo
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It is to be noted that the simplified formulas of all the transfer
functions listed above are characteristically in the form of products of
two functions. A general formula not in the form of a product has also
been developed by Tchen (1981b), but is too complicated for the application
to the present problem.

We first consider the portion of the spectrum of large k . The small
eddies are embedded in a gradient of big eddies and in their coupling with
the bigger eddies, the small ones play the role of an eddy viscosity,
to cause a loss of the bigger ones at the rate 'bt<t°z)(0 « This transfer
is in the pattern of a cascade from the big eddies to the smaller ones.

It is of the gradient type and is called the direct cascade. Now we
consider the portion of the spectrum of small K .« There the big eddies have
no more gradient left in the medium in which they evolue, if the turbulent
medium is isotropic. The coupling between the big and small eddies is

not through the gradient transfer, but is of the type of the damping. The
rate coefficients (l‘: ’ QX, are originated from the wave-particle interaction
[Tchen, 1981] , and may become negative when k is sufficiently small.

Then they give an amplification. When this happens, thb transfer functions
reverse their roles from a loss into a production, 1i.e. 'c)t<;7-> YO .
Such a transfer mechanism is called the reverse cascade . An analogous
phenomenon is known in plasmas as the Landau damping or amplification.

If the demarcation wavenumber between the direct and reverse cascades

is krev , the large and small values of k refer to

k > krev and k {k s (75)

rev

respectively.
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VIII. STATISTICAL EQUILIBRIUM A8D NON-EQUILIBRIUM

By differentiating the equation of spectral balance (GD) with respect
t &k, we obtain:

QEM@= -£° - 1°, O K. 76)
¢ ;g ¥
The left hand side vanishes iIn a statistical equilibrium, yielding
€%4+71° £ . an
5 g

The constant of Integration in the right hand side iIs determined by the
conditionat k= e , 1i.e,

e 2 °
Eg = 5‘; = y<(v§ }/and Tg =0 . (78)

In addition, we note that
T®=0, at k=0 . (79)
g

For the inertial subrange iIn statistical equilibrium, we can write
the spectral balance In the form

T o= T 4+ T o = f (80)

by omitting the viscous dissipation €_° by definition of the inertia
subrange. Here Eg is a sink In the enstrophy transfer across the spectrum.
The statistical equilibrium requires that the two transfer functions
find a net positive transfer to balance &, .

On the other hand, if the net transfer is negative, & ceases to be
a useful parameter, and the hypothesis of the statistical equilibrium
becomes invalid. Consequently, we have t retum to the original equation
@D for the spectral balance in non-equilibrium:

°2
3 (%) = - T

by assuming a supply to the spectrum from an non-stationary source of Larger scals,

©

(81)
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Here Wwe have again omitted the molecular dissipation. The negative net
transfer, i.e. T % 0, means an amplification of the enstrophy in time,
and forms a reverse cascade toward the small wavenumbers in the spectrum.

IX. SPECTRAL DISTRIBUTIONS

In the preceding Section, we have distinguished between a direct
cascade and a reverse cascade, as characterized by a transfer of the gradient
type at large k and by a transfer of the damping type at small k .W¢
analyse the spectral distributions for these two cascades in the following
lines.

A. Direct Cascade

V¥ consider the joint enstrophy transfer by u and EX = fluctuations

e

in the spectral balance (80), and rewrite it as

[@u)KW}z//zk' K2 Fg(k') = fg , (82)
0

with the use of (66a), (67), (70a) and (71). The eddy viscosity (k')
governs the transfer under the driving force exclusively, and the eddy
viscosity QKU') governs the transfer without the driving force.

An approximate solution of (82) can be obtained by an interpolation
of the following two separate equations of spectral balance:

R
2 (K ?jdk' K2 F (k) = € (83a)
u/) 5 2
2 (K, B2 k) =g . (83b)
9 5
0

finding the asymptotic solution

2/3 ,-3 ~
Fu(k) = C €§ k™, € = 2.6 (84a)

of (83a), with
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<Ku')" by 5;1/3 2, b= 2C = 077 (84b)

and the asymptotic solution

F, () = A, (s>‘1"‘ K, A = t¥ 0.0 (85a)
of (83b) with
(ncx'> = o (s )1/" i s 1.66 . (85b)

Note that, for obtaining the solution (85) of the equation of
balance (83b), the eddy viscosity (71) has been written as

va u/dlf," <sx'(lf.")> c(k")

4
= (s )/dk" 27 K" G(k", for finite k, (86)
&
where <s> is the trace of the spectral density tensor, i.e,
<s >= trace<s£> . (87)
s

As a white noise it has the form

<SX(1.f")> = (s ) , independent of k", for finite k"

= 0, for k'=@ . (88)

Also note that
dk' = 2w k" dk" . (89)

W have calculated 6(k") from (73) and (74) for substitution into (86), to
fiud@(x‘)as was written in (85b) . The numerical coefficient ¢, has been
determined from the equation:

Ce = ur[-sl-{”(%/(-;ﬂ)yy' n Z‘%ék ]-’3 (90)
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Finally by substituting for <IK.X'> thus obtained, we have found™ (85a)
as the solution of (83b).

Now we return to the problem of the interpolation of the two
asymptotic solutions (84a) and (85a), by incorporating the two eddy
viscosities (84b) and (85b) in the equation (82) of the joint balance,
which becomes :

K
1/3 -2 1/4 -1 2 '
(bK£§ kK +e (s ) k)2/dk'k' F(k)=55.(91)

The equation (91) shows that the dominant eddy viscosities arein the form of

(k' > for k<ik,, and {&g') for k> k, (92)

Then we find the following formula of interpolatlon:

- 2/3 -3 :
F_ (k) cfg K \[/(k/ko) , (93)

with 1 ]

Yrky) = —j{'— t— | (94)
(

1+k/ko)2 I+ k/k,
and

1/3 -1/4
ky = 24,/0) & (s D7V
¢ 046 {s)-1/4 (95)

It is easy to verify that the general solut-on (93) include the
asymptotic solutions (84a) and (85a) for k< kg and k 2 L respectively.
It is seen that the spectral law k"3 precedes the spectral law k_l'
in the sequence of increasing wavenumbers.

B. Reverse Cascade

For the reverse cascade which appears in the region of small wavenumbers,
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we shall use the formulas (66b), (68) and (69), and write the spectral
balance as

;ﬂ(au,‘f' ﬂx’)(goz'):. é* (96a)

or
- / V4
- ) RS = £, - (96b)

by a change of notations from (65b) and (65¢). Here C* is the rate of
increase of

"é”>t<¢z) % g, (97)

in non-equilibrium, and is assumed to be independent of k in the global
balance which may include the supply from the synoptic scales.
W divide toth sides of (96b) by Ruo and differentiate, to obtain

(34"({2;(’ - ﬂ; ) =& T/t R, (98)

or

- » -,"'/__
E:""“ﬂua*(ﬂ;*ﬂ“)/\’, /’ (99)

where (1.00)

T=(kK/RE) ¥ |

IS seen to be a positive and dimensionless number in this subrange,

since R° is a positive function which increases with k monotonically,

by definition (68b). We can estimate 7 to be of the order of unity.
Finally we differentiate (99) with respect to k and find the

spectrum

>—l/4

Fu(k) = Au* g*<s ‘(k) k"“, Au* =(Jq/%0;)cK"l = 0,24 , (101)

where



2-28

k ‘ «
ﬁ:%;., b= (45/0%)5 = 02267 . (102a)

and

L4 7
= -k /]
is estimated to be

o¥ 2, (102b)
p 2/’
if we approximate {L° & /a (Kﬂ } Use of (68) and (69) has been made.
Since the reverse cascgde occurs at small k, we have taken the value
(54c) for (3 .
The solution (101) takes the following asymptotic expressions

F (k) = cC* 6*2/ 3 3 , for k < k, (103a)
Au*£*<s>-1/4 k"4, for k>ko’ (103b)
with
-4 2 ¥
-8 A(r/g)%2 1oy, Al o2s (104)

We note that the numerical coefficients (104) in the reverse cascade
are smaller than their corresponding values (84a) and (85a) in the
direct cascade.
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X. CONCLUSION

In the direct cascade, a critical wavenurber |,  separates the spectrum
into two regions: The regionat k > k  shows a dohinant role of the
random force, and has a pover law K ° « The region at &< k, has a
negligible effect of the random force, and yields a power law 3L te
reverse cascade, the same power laws repeat at a new critical wavenumber
k. * ( < k), with their nurerical coefficients modified by the multiple
collision , and with different parameters, A bunp appears in the transition
fron the direct cascade into the inverse cascade (Weinstock,1978] .
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SECTION 3

EQUIVALENT METHODS

FOR QUASILINEAR TURBULENT TRAJECTORIES

J. H. Misguich and C. M. Tchen*

ABSTRACT.

The propagator formalism is summarized in a self-consistent
way for the asymptotic quasi-linear equation.

A comparison is performed between the propagators and the
Green"s functions in the case of the non-asymptotic quasi-linear
equation. This allows to prove the equivalence of both kind of

approximations used to describe perturbed trajectories of plasma
turbulence.

*This work investigates the detailed dynamics of the perturbed
trajectory in turbulence. The manuscript is prepared for publication.
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Renormalization introduced in the microscopic
theories of plasma and fluid turbulence essentially consists
in taking into account the turbulent perturbation in particle
trajectories.

These turbulent modification (perturbed orbits) can
of course be calculated by iIntegrating the equations of motion
in the fluctuating field. In a kinetic theory one uses however
more compact and powerful tools which allow to directly describe
the time-evolution of observable averages of all dynamical
function by means of a unique entity: the propagator acting on
phase variables x and v, or the Green function.

The aim of this work consists to prove the equivalence
between two approximations which have been developed 1ndepen-
dently in these two formaiisms. This allows us to bridge the
gap between different methods used by various authors.

Turbulent modifications of the trajectories are
described 1n the lowest approximation as quadratic function of
the fluctuating field, and by considering all other trajectories
as unperturbed by the turbulent field. This approximation has
also been used 1n the quasi-linear equation for the distribution

function and is thus referred to as the guasi-linear aporoximation
for the trajectories ( although it uses free trajectories as
basic onss) .

The turbulent trajectories so-obtained are then ussd
as a basic ingredient in the renormalized theory of plasma or
Tluid turbulence 1In the next approximation which i1s referred, to
as the Renormalized Quasi-Linear approximation (RQL{I,%%A:S,G, /
This latter appears to be equivalent to the Direct Interaction
Approximation (p1a) introduced in fluid turbulence /4,3/ . Thus
the renormalized propagator appearing In this approximation ( In
the weak-coupling limit) actually describes lowest order turbulent

trajectories( i.=. in the quasi-linear approximation ) and
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we will limit ourselves to this approximation for the particle
trajectories.

About the methods used to describe these trajectories,
we have to remark that one has first integratedthe equations of
motion /1/. WEINSTOCK /2/ has then introduced in this problem mathematical
operators®acting on the phaseiwvariables x and v , the propagators /7/

the role of which consists to describe the time-evolution of
associated dynamical variables x(t) and ¥(t), and, consequently,
(Liouville's theorem) to describe the time-evolution of distri-
bution functions. In order to calculate the action of these
propagators, WEINSTOCK had however to introduce particle
trajectories which have been calculated by integrating the
equations of motion. Some subtle effects , like that giving

rise to an average displacement of the particles have been first
missed by this method /3/.

Other unexpected effects, like the non-vanishing
correlation between particle velocity and position, have been
found due to the first explicit calculation of the turbulent
propagator /8/. In Ref. 9 and 10 we have discussed the explicit
relation between trajectories and the propagator for forward
and backward propagation in time.

Other authors have based the kinetic theory on the
Green functions /6/ . We will compare here these methods and pro-
ve the equivalence between the approximations used. In spite of
the global equivalence a few differences remain, namely concerning
non-Markovian or memory effects.
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IL. KINETIC QUASI-LINEAR EQUATION

R L e e T o S e e o e e S e S e S S e i o S8 i
e S e e

The renormalized propagator and Green"s function
which will be derived are described by the quasi-linear
equation which will be deduced here In a simple way.

For electrostatic plasma turbulence, as well as
for Navier-Stokes fluid turbullence, the starting point can be
put 1n the form of the plasma Klimontovich equation

[‘D_ IEVIRCIg E_(g,‘c).z,v ] N(x,ut) = o T4

ok X

( in the plasma case a ratio o/m is included in the electric
field E , with q the charge and m the mass of the particle).
In the plasma case n(x,v,t) IS the Klimontovich microscopic

distribution

ti
NCGYY = D Sl x-x]d[y-wv] 4.2

Here x and y are the phase space variables, while x, (t) and v, (¢)
are the dynamical (time-dependent)variables described by the
exact equations of motion. The electric field iIs the microscopic
one given In term of N by the Poisson equation /11,12/.

The ensemble average introduced iIn statistical
mechanics allows one to define the usual distribution function

by

f(’i\\i |\5) T < N ({:".’n"—)) I3

and the Vlasov mean field for inhomogeneous systems by (g(;g.\-)}

Fluctuations are defined as the difference with the
average :

Fl=N o 54
E'- E - ¢€> 5.5
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The Klimontovich equation can be written in the compact form ( 'Dt

L N .6

J
=

Z

n

ith —

" L= <L>=-!~Y-<§<5,E)>-}
I_ [} ‘) -
L =-% (a.t).‘;.! 5.2

(Dé?:-‘:? +<L'F'> T8
b =LF

L "= L '+L'§ + BLU I.%a
where '_BL’F': L’F'-(L'F'):" (V- R) L’F' T.Ao
A... = <4-..>

describes the fluctuating part of the product. Let us remark
that this last equation (T.3) also writes

Whe LE' S UT - <UD T.9b.

From the two equations (T.3) and (z.%) a general

kinetic equation can be derived in the following way : equation

(x.9) is solved for {' in terms of { and the solution is
substituted into (I.8) . A closed equation is then obtained
for F , which still contains the initial Fluctuationf'(t):
this equation is called the general master equation. This
equation, obtained by Weinstock from the Vlasov equation, 1Is
fully analoguous to the master equation obtained by Prigogine-
Résibois 1In statistical mechanics, or to the one obtained by
Mori or Zwanzig.

In order to go to a kinetic equation, irreversibility
has to be iIntroduced In some way : it usually consists to take
the limit of long times (t-t,) compared to microscopic elementary

v

ot
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times (Eulerian correlation.time of fluctuating fields) and to
neglect the term involving the initial fluctuation.

One of us has developed with BALESCU a theory which
shows that this general kinstic =sgquation can be obtained in
a rigorous way for one ('kinetic") projection of the distribution
function, due to the existence of two iIndependent subdynamics
/13,14/. This theory brings justification and necessary validity
conditions for the simple derivation which is made here.

S I e T o o S e S e i e S s e e e
EEESSSEREESRSSNES

The basic tool for solving equations (T.9a,b)is the
propagator. We will first present the simple and trivial exemple
of the free propagator associated with unperturbed particle
trajectories. In such a simple case, the evolution equation
reduces to

Wt F - Lo F
where Lo eV .V
The solution immadiatly writes

Flxwx) = eL"’tF(z,\_f.o)

Here the exponential operator

LQE -
e = U°(_E,o) z €

which is solution of the same equation

Y Uo (k,0) = Lo Uglkyo)

Evy

allows us to describe the time-evolution of the distribution
function as

Clxed) s L, (t,0) Flxx0)
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It is important to remark that this same operator also
describes particle trajectories:

G ¥.Y
xlbas) = U (b kaz) x = ¢ Xx = X+TY

V (kas) = Ug (kb ksa) ¥ = e_c!'g

£
(1]
(<

and this allowsoneto check the “Liouville theorem” in its simple
form

Y (x,v,b)= p_'f !.Yg(g,y_,o) z F[g-y& )\L,o‘]

I RTAS Y

This is the basic advantage of the propagators: the same
mathematical tool allows one to describe the forward propagation
of the distribution function in time:

F(?_‘,Y_,E +)= U, (ks k) F(x,v,})

and the inverse (backwaxrd) evolution of the dynamical variables:

x(t)= Uy (k42 ,t) x(tq2)
thus

X(k+3): [Uo(l:+n,h)]-4_;5 = U, (E,b43) x

Detailed demonstrations have been given in the general case /16/

In the case of equation T 4 one can define on one
hand the propagator U(t;,\r,) describing the exact motion of the
particles in the fluctuating field E' or L'

—

ebe U (E,\-'o) < L ( f_;k) U(&,\:Q) U.Ae
(U operates on both X and )
or, on the other hand, the Weinstock progagator associated with
the homogeneous part of equation (I.94)

(be /\(‘:,\'.0) = [[(U +’B L,(tJ] /\ (L,fo) .‘I.’M

4
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Here we have to stress the fact that the fluctuation operator ®

equally acts on ! and on A . Thesolution of equations
(w.94,b)can thus be written

Plo= Al (k) + [

L

t —
ar' Alte) L) F(v) T.AA

L- - 3 Y e
= Dk £ (ko) +de' Ultr) L' )| (e -jdk' Uter) LU Bl
ko l.o T.2b,

where L U:' :-E C)ﬁ,k').}.\; ot Tou& £

- RN S it e e
bt e 2 e e

The kinetic limit of long times can be justified
by the subdynamics method /13,14/; i1t consists in neglecting
the influence of the initial fluctuation {'lt) and in taking
the asymptotic long time limit ko —-= . In this case we have

F'lt) — ch At k-2) L'U:JJ ?(t-a) T.A%

which describes the general mechanism of creation of fluctuations
from the average function, by means of the fluctuating fields.

On equation (XZ.12b) this limit gives
LU UT) = F\,z LUl Uk L (k)f (k) -Jdc NUNEL S
o ° T.A4Y

which remains an integral equation. By decomposing

Q= (5 + L)' T.as

we have

Clk) = Y:iz (L0 kLU k) F(Es) +st LU UL ) T (E3)

(-]

- Jdb LU) V' () Cltx) .46,

Since we have

3 TleE) = (L V) = Tib Ulkk) ¥ L LIS L))
A T

4
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the last term also writes as foflows

t , -
ety far cum v L@ F e

-”

b o
..j ar' [2 - Tw] Ter) cley T.A%

ot
By using the complete (but formal) solution(I.i2a)

in I3 we obtainsthe Weinstock master equation

b -
VW § 8= LT + [at' (LA T + LLIWA(LE) (k)
T.A94
to T

the kinetic limit of which gives the general Kinetic equation

V(8 =TIF L) +J:'5 (L' Altka) L' (ks F( t-3)

0]

=
&

in an explicitly non-Markovian form (5,f#) &pends onf{(t-z) at
earlier times). The second term iIn the r.n.s. represents the
turbulent collision operator In Its most general form.

The subdynamics method allows one to directly obtain
the same equation in an apparently Markovian form ( including
however all the non-Markovian effects : see A6/):

T T+ (3 U Atk L) Vb TLO)

[E(u ¥ G—(L)] F (b T.24

These two forms are rigorously equivalent since the turbulent

propagator‘if is defined as the propagator of the kinetic
equation itself:

(bb V‘.‘:ll:O)

[ Teer + cer] Vitkd) T.22

thus

i

?(-0!|¥ ) v“:'b) ?(ZI!IEO) .23

Equation T.22 remains a non-linear equation for the turbulent
propagator. This dynamical non-linearity can be expressed also
in the non-linear equation for the turbulent collision cperatcr

3
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2 —
c® - B (Lo Al Loy Tk T2y
where V is a superoperator, non-linear in the operator G
— t -
T (ko) = X, exp Lw LT+ 6Ley] T .25

This kind of operators have been studied in detail in Ref./15/.
The formal solution of (T.22) can be written in terms of the
free propagator iIn the average field

VW, UC(kts) = L(k) U°(Ets) T-2¢
in the form of the DYSON equation /18/
-~ ‘ b -
V U‘-\ko) = Uoéht‘} + }Ou" UO(L'E) G(t‘) v (k't") .23
to
t 2 Y v (t.s t
= Uk ko) + Bo\k” U°“:,\Z'))d'5 {U(E) A(EE-5) L(t.r-)>\l (t-3,t0)

to o

where & is given by I.2Y in terms of A and V . The renomali-
zed quasi-linear approximati?goLyhich is equivalent to the Direct
Interaction Approximation (pIa) Introduced by Kraichnan,
consists in approximating the Weinstock propagator /A by the
average turbulent propagator V . One obtains In this way:

Vo (649 = UCEk) +ij U (kk) & (&) V, (Ekd) T2t

where the RQL turbulent collision operator is defined by the

following non-linear equation In terms of \/W'

p- ) —
\ 1 A . k I-Lj
ANCE Jc\z. (L@ (e Lk N (FaE)

o

Equation(L%2) describes the xinetic evolution of
the distribution function f:(u) : a priori i1t involves all
collisional effects. It has however the same apparent form as
the equation obtained usually by introducing fluctuations

El
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in the collisionless Vlasov equation , although such a procedure
i1s not clearly justified usually. The equation obtained here is
the actual justification of this usual procedure. Here the effect
of individual particle collisions only appears lLatsr If one takes
into account the specificity of the kKlimontovich equation : this
appears i1n the binary correlations

Fro = AN k) N (x,59,,8))
which involves the "self correlations”
%sur 5(64"7—(23 5 (\—,4’22) < N,‘l',{,u\!.' ":)> T.%0

o T
in addition to the usual (‘distinct™) correlations/19/ :

SELF

?42 = ‘:'l €1 ¥ Qn +%'7- .34

For pratical purpose, i1t is sufficient to neglect self-correlations
in order to describe the so-called "collisionless plasmas™ from

the Klimontovich equation. Correlations are then turbulent
correlations, and the equations are identical to those obtained

by the common procedure of the "fluctuating Vlasov zquation“but

the justification is more clearly exhibited.

II.E..Quasizlinear equation for rcollisionless’ turbulent plasmas
Approximating the general kinetic equation T.2¢ oOr
T.24 consists in approximating the propagators. The quasi-linear
approximation consists iIn retaining In the turbulent collisions .2y
only free trajectories ( In the average field) determined by T.2¢

One obtains
mvmn—mmmw»m&

Ny fE = [Te s e (]FeEr 3.32

O MU R OO SRR LT 3

where

Go\_(t) = lde {U'() Lok ta) L'(&-'e)>U°(l:-:,l:) CE3

O
Wi, = SO T AR ORI Tt SER QT A N

The free propagator (J° is given by
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rbb Uo(b.ko) = E(E) U'aa'..\:o] T34

i.e.

E
Pl Ko [ Tvs-ceeny] s
L -

and, In the absence of any average field ( {.=, for an homogeneous

ensemble) 1t reduces to
(t to)¥.¥
Uolk ko) - T3¢

It 1s Important to remark in the collision term {33
that the progpsgator U%ts,t) takes into account ( here in an
approximative way) the non-Markovian feature of the general
kinetic equation. The effect of the propagator V°(tt3) in the
electric field correlation consists to Introduce a Lagrangian
correlation, here taken along a free motion ( in a renormalized
theory: alon the average motion).

The explicit form of the quasi-linear equation can
be easily obtained in the absence of an average field. We then
have

-

L =
-(tty vy
U ( kO) —_—D UaU: ko\'
and
- 2 - B V. V -
btarg.g]?(z.\_/.t):? -sz LE'(x ) c E(x k a))-- ¢ TPy k) T3
o =
- [«
Due to the obvious non-commutation
) TV.¥ 3 Y.V S v
éﬁ! e [ + % :! T.28

a gradient term appesars(besids the usual diffusion term in
velocity space ) which comes from the nor-tarkovian feature of
the kinetic equation :
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$MWM&W!WM¥MM&W!MW?

i
!
1
3
3
s

E;B&w.yl

P e I s

g ) DL TV Tt ; 39
¥(§'!'E)=L§\_f¥(y'“ Q! +‘b! - — ¥ : E

SO Lt N7 01 g e i

g e R A R T e

where
s > <levs
'D(g&):sz (l_:'_'(;g.t) _E_'(x TV ,l:-z)) :szjdl_r e ék(v) T 40
= A A L
and
20 | ”~ ail{:_.\_l'c "
E(!.L):Sd‘ ) < E'()S;t' E({:‘!l\:';)>= d; ® djs e S-= Elz, w4
o}

This last non-Markovian term has been shown to be of importance
in presence of a strong magnetic field /19/ . Here the fluctuation
spectrum is given by the Eulerian correlation ( assumed homogeneous

here for simplicity):
t —-,Clg.f ' \'
é 5('6)4 gdf e < E(xtl E (Jj-g,l:-'c‘s> T.v2
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-t e e e e e e S

E e 2

The solution of equation I.>% is written in terms
of the turbulent propagator V°

?({.!,E) z Vo(l‘.,ho) F(’.‘.IY'Lﬁ) oA
which is defined by the same quasi-linear equation:

‘DE\7°(E.E9)=[_\_I.1 + V. D(VELY +1.§lz.h).Y]\7°Mo) LR

where D : «E_v and 2:2"‘ . The formal solution is a
time-ordered exponential operator:

— t 17
V °(L,Lo) = X+ exp Jd,{;' V.V +(B.-2(V,t‘).?i +2.E(V.L)-_] .3,
to

/16/
where X 4 is the operator of time-ordering which prescribes the

ordering of the different factors coming from the expansion of
the exponential, in the order of decreasing times from left to
right. Non-commutation of the different terms iIn the exponent

can be taken into account by means of an Interaction representation.
In a general way one can show /15/ that the solution

L
Ul(kito) = X, exp Sfu' LA +B®)] L.y
of the equation
rb!: U(l’.,to) s [A“‘-)'FBIH_-] U“:,‘tol T.5

(where A and ® do not commute) is given in terms of the
(assumed elementary) propagator

a UA“:.L°) < A(t, UA“’..to)

by the following formula ( see =g.3,10 In Ref./16/) :
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U (kta)= Uy (L) X, eaanoU:' U (L) BRIGEE) T
ko

By choosing A=z-¥.¥ we obtain

‘: ' v. b of Lt
T (k,60)= U (i) KJ,exl’joUr' Vet )2 [ Rwk)-2 +ECE)T JUTE)
Lo m.g

which can be put into the form

- -zy.¥ v ' e
Vo(l:,l:-z) ze GY.¥ x+ .c,q,Jd;l (D,:"&' V"-){?.‘J(!,l:-tﬂ.‘)(na-a Vd)ﬁ-ﬁaf b *‘)VJ}

° uy.
or
ZV.V Glw).Y + X (tV)V'3 +$, (‘5 M)V, Va *’D*d‘d(\!'wmé
\lq(t te)-e ’—X+e. T Ao.
The general form of the coefficients £,¢,{ ,§:_ has been

given in egs (5.14-18) in Ref. /1 /. In the simple case of
a stationnary spectrum, ® and £ do not depend on time. IF
we neglect in the exponent terms quadratic in the spectrum %

( 1.2, the weak coupling approximation) the result can be written
|n the followmg sunple and ;Lactable form -
- A (z,V)Y JETY Bl V)V %y ag 5.y)D
i
e S w3 AT T
where
dey(2) = & Dyly) T .12
(‘73(‘6.\.’) : - %Z %Dﬂ_(y_) +% q_fﬁé a3
DV, DV,
Yoy Gi) + = B (Dyw+ D)) +3 T f . i
Ena(-‘l!) s _—Gz—: DAS,I, - Eiz *—Aa(y) W 1S
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The physical meaning of these various coefficients

Lo 8 may be obtained in the following way. By integrating
the exact equations of motion
X (k) = v(b)
{\'/(&): ETxt ] e

up to the order E€u$ and by taking the long time limit, we
obtain:

x(-3)) = x -zy +{lu3) ™ 13
Y (k3)> =V 5 WOy (V) T.Q

3 d V4
LNy k-0) Va (k21 = dy lum) ¥ dMa(y,v) @ .19
V4 x'a (t.v) Vo lt2)) = Fale®) o 2.
L) (be) X k31 By (1) * By (2r7) T4

We see that {E represents the turbulent contribution to the

average displacement, the velocity, dependence of the coefficient
&L represents an average acceleration or_slowing down : these

o terms are due to the velocity dependence of the diffusion

coefficient. The "term ¥ represents the elementary process

of the quasi-linear deé&ription: diffusion in velocity space .

The term § represents the associated spatial diffusion ( {x'¢) ~3?*

the Dupree damping term) and the term I represents

an often neglected correlation between positidn and velocity.

This whole set of terms have been discussed for the first time in

Ref. /% /.
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Inversely on can check that the propagator obtained
in §.A4 allows one to recover results ®.1#-21 ,coming from
the equations of motion, by letting the obtained propagator acting
on X=x(k) axd V:Y¥(t] Tor instance:

<¥_(t‘-3)> =VO(E,£~(D) § = X-5V +f’3(zl!’
Ly (k) gvv(l:,l:»z)\% = Y, ’fqﬁff'!)

AWVL
a-5.0.
The obtained propagator thus takes correctly into account
( and allows to describe) turbulent trajectories in the quasi-
linear, approximation , i.=. linearly in the spectrum.

In this weak-coupling approximation and for a
stationnary spectrum, we obtain the solution of the quasi-linear
equation in terms of the initial value ‘Z(x. »©) as

X\ ,'5): V (T:b) F(Z‘.".’.,o)

-}
~

.9 (Y AR IR o
e ”et' ¥ e 17 i f (xi0) g .2z
Let us introduce the Fourier transform by
- kX —
WETR gdk et ST T W T .3
— -,“.k x —
fLw=s=L ng e - Clxw) _—
b3 In>
We thus have
— - O -—
T lm e Vo ‘ku.ox e
!-':"'":ggm;'”w“"‘“"""‘*"'—"»':-‘~-“~¥"‘o‘ e T AR A D AN A e T ity WB T i 5 e et el e et s PRI T
-Akvze akfblve) Ak K (% v)'b -k. Slvr) 9. i _'g _ ,
‘{(V‘E)- e e. e ?E(Yo

PN S T ADALINCY I T Tl ST T ATLAN T VRIIAT T M LTS T D S PV IR WA T O A 4 00N SV INT TSI SRR ¢ SR Y e o T TR Y Al et e ¥ A S
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For later use, let us also introduce the Laplace

transform L
Do Fyn
F (W) = K ar e Flt)
JO
We obtain
_ o A (kv)e Lkfolve) x\c&y,dm.zﬁg -kdwak D
FE(!'U):Jd‘ £ e € e e ?k(v'k.: o)

° ' m.27%

In the simple case of a stationnary spectrum the
solution of W®.2 can be written

— -tV +E2.] Dy +F ).V
\l°(l=.°\ = € } - [= } ] =2

and the solution T .23 can also be written formally as
o .
: A L

- B — —
FE(.‘—"LO) :Jdt < Vvoﬂk(t ©) F\((‘ll°)

O

de ¢ e S;K(\.'.L—o)
o

that will be compared later to the non-asymptotic case.

Ja 971 3 -dg.\_rzn,'}.[g(g).'@_-&iE(E!-‘S] _
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© IV. RENORMALIZED QUASI-LINEAR KINETIC EQUATION

Renormalizing the quasi-linear equation essentially
consists 1n taking into account the turbulent propagator in the
collision term, instead of the free propagator. One thus have
( see .24 ):

VW fw - [T sew]fe g

with . _
Glb)- sz LU (k) N (EF2) L‘(F-b)>VU'-=.*-) .2

and
2 —

L - | WL
V (bko)e U(kito) + J A’ U°(k ) J‘“ (U E)V (Es) L'k V(Ez BV IEE)

0 .3

o

This last equation iIs the RQL or DIA approximation of the DYSON
equation T, 2%, . 1t is equivalent to approximate the Weinstock
propagator A by the turbulent propagator Y . In equation

T.A6 the present approximation is equivalent to keeping only
the first term iIn the r.h.s., (next term are thus responsible for
"clumps" and other higher non-linear effects).

The weak-coupling approximation of eq. q.2 tfor the

quasi-linear approximation of the collision term:

o NT2L
YV (tto)= U°(tito) +S§x' U°(L,t'JJaz LU k) UCLE k) L' ) Uk )V (E) k)
to

0 z9

This iIs the 20URRZT approximation of the DYSON equation /17/.
It 1s equivalent to

'BL— \T((:.\o\ z I_ Lk + GQL((:!] V(E,ko) w.s

and the solution
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— k

V (ko) = Xy exp (k! [Twr+q Dty 4'@.1_3(./,2).?]
to

has been developed explicitly inR.lo-i ,

The important physical effects introduced py this
renormalized approximation is the main motivation of the present
comparison between the techniques of propagator and Green®s functions.
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V. NON-ASYMPTOTIC QUASI-LINEAR EQUATION

e e

The asymptotic form of the general kinetic equation
L2 or of the quasi-linear one [I.32 has been obtained either
by the projector technique and the subdynamics method, or by the
usual arguments:
1
F (Qo) -+ O

I
ko L.A

Some authors however consider the non-asymptotic equation obtained
by simply neglecting the initial fluctuation in the general

master equation. In spite of the fact that there do not exist,

to the best of our knowledge, any rigorous justification OF the
consistency of such an equation, one can consider that the long
“time limit may be taken afterwards; such an equation presents

some advantage namely for introducing Laplace transforms.

In the master equation T.44 we simply take

to=o
P(o)so ¥2
and limit ourselves to the quasi-linear approximation
At t) = ULt 3.3.
We then obtain the non-asymptotic quasi-linear equation ( ® =0)
— E 2T A —
@ew-if]?(a.\z.k):}v.jaz CE'x k) B'Cry b)) PR Tlxwten)
- Jo -
% Ko T
= a3 k (%) ﬁ (’St\.’.‘:-z} Ty,
Jo

where the integral kernel can be written in t=rms of the (Eulerian)
spectrum :

-~

AN .
\<Yﬂ=1-¢d€€ S (3) e NS
Qv =4 oY

fyT L -%V.¥

We assume here an homogeneous spectrum ( s is X-independent).
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In Fourierttansform ( T.23 ) we have

. - _Aikx(k Ave ¢ -zVT_
[’Dg&k.g]?w(z.k}:i jd.i_f_e, Ldzﬁ. 50\29. S .:% Clxyts)

- an> fb\; = v T

or
- t 3 L _
Ebéu'ls.!] () =Jdu K(z) @k(t-z) E}v.J'dE \ri_(k,v,z).}b-! filvite)
o] - )
v.3
where
(2%
Kz)-2 .]dQ_e g"m,“n_ =2 H (kv 2 g,
v =7 aV (D.. = ‘ !

The so-obtained equation ( v.? ) exhibits both
non-Markovian ( f(t-3) 4 () ) and non-asvmptotic ( k#s )
features. By neglecting these two effects, the turbulent collision
term would reduce to

. e
‘)—- 4% H US.‘.’:")'.\O‘ V.s_
v ), oy
where
> 2o <Rvs
Jd‘ H(_‘S:O,Yt;)=JdB jdg e gb(Tv) = -D \\ick) V. 4o,
° P =2 =
gives the usual velocity-diffusion term in the homogeneous case
( k=0.
Let us introduce the Laplace transform of the
complete equation ( V.3 )

(s | RCATY 1.
[

and let us restrict ourselves to the case of a time-independent
spectrum. Equation v.3 then writes:



RiRatttanagtoni e Lo gont b AT SISV LG L S AN IR -ran‘"

[Awuku};cvw) k(w)$(vu)+\:<vt.o) viz.

WWW&W

where
WA )
o[BG By, e
and
kv v
H (k,y,w):J:z a&(w ; ')zjdﬁ R ()= Hwky,v)  Zo
- 0
such that
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VI. SOLUTION OF THE NON-ASYMPTOTIC QUASI-LINEAR EQUATION:

GREEN'S FUNCTION

o S e e e ey e T i e i S R D S e S i e R D R R e T D e e S s 0 e s e e e e o
Lt 2 e e e e R

By writing equation .12 in the form

A [w-ky -AKW)] Fv,w) = F v ko) 7.4
one can define the associated Green function by the equation
A lw.ky ik ] & (v,v') = Bly-v) T.2.
W,k
and the solution of V.4é can be written
_A'.’S:,ﬂii.ﬁ&".&." r R T A R AN TN KSR -,:m‘zwrara;;mn:@m;&'ﬁzﬂzamzﬂ
b lvw) = de' G (yv) §, () ko) I3,
- Lk - , ;
ﬁcﬂﬁm_&ﬁd

The Solution oF aquation & Thas been given by
HORTON et al. / § / 1In an approximation which is equivalent to
the weak-coupling renormalized approximation used iIn Section 1T,
in the propagator formalism for the asymptotic equation. Our
aim Is to compare the approximations used in the two formalisms.
Their solution writes [eq. ¢.12 ui Ref ./57] -

- - kEHz® S Twoos (kyakan]s o Qv
G [(uv):|ds 2 e M . o iHT
ok (lm H G)'5/?. 7M.4.

This form actually assumes an isotropic tensor

Y.ﬂ.! = ¥1Vz

-

k. Hik « Hk?

i=)
[

This 1s equivalent to neglecting the velocity dependence a..‘; =0
as well for ths dependence of H in w-ky as for its depenaence

inv .
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In the framework of these approximations, we will compare in

Section@ witlhrthe asymptotic solution obtained from the
propagator 8.26. .

Let us introduce a Fourier transform in velocity space:

5(2,)2 jd‘ie k.4

- - 4‘ _\'/' -
f s A de' e 2 Tely) 7.6
503 bAT ) -

The solution Vi.% can thus be written iIn the considered approxi-

mation: _ktHB> Lw..', (kvs t_g.g')]'s
o A2 @0
T (v.w):jd!’}d* = e <
be o (b )%
S [, s g
e dﬁ e F‘S,i(tzd 1.3

The dy' integration can be performed (!':g-gv)

by using
ﬁ.\_ﬂ —sz 3/ 82/"b
sd\g 2 e = rig;jz 2 V19

_ 2o - X*HB> AWD -’%‘S.Y: a\!(ﬁ'lz‘f"\ '(5"‘ ‘\'6)2”;
Fcvw) < ‘dq gk (ko) [4" e " ¢ e e e
- - T )
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By collecting terms Hz> we finally have:

o N e AT Ak S A L e el o v SR R e i B A i A AN o ek R D 8 O
_ - ® L4V Awe -«kve -@_; k?H -zq2H +3qHk
F (v ) = |49 g (k=o)|dB € e e e e <
K - 1E9 -
° v

One recognize here, In a scalar form, the spatial diffusion
term -’-‘-33’ ktH (Dupree damping) , the velocity diffusion term
( g¢H ) and also the crossed term 4 Hk corresponding

to the correlations between position and velocity.

== = N RN EESNEEREESREREE=

Solution of eq. T4 can be written

T . . -4 = i
F vy = o4 (oolew -4 k()] F v kel
o gl-ky-<K(w]s_
- dt 'C. KL!‘E=°’
©
Al | -Likye +t’e}v'\1(w'\s!’!)'2'v _
= d'ﬁ < e - “!ak-“) ﬂ 42
v X
Here a  propagator appears
- -Akys +'c%-\,-t_'|lw-‘ey;!)-:§v
U (.‘lo) s e - - Vi

w-k.v

which is solution of

20 i D v} L | () il
2 Uw,g,\_,("") : [—4 kv +;b-! : ‘;_”U ky,v) q!] Uw-k (5,00 Y

c

and i1t generalizes to the non-asymptotic case the previous
propagator ( for stationnary spectrum) :
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-A\"VZ +5 [:Dl!)\ ¥ rlv! V]

v (r ©) =

It can be seen that in the non-asymptotic case ( vi4y ) the
non-Markovian contributions are taken into account in a much
simpler way as compared to the asymptotic case ( F terms iIn w.is )
This is due to the tensor H/fw.ky,v) : its approximate form for
=ky is equivalent to—the Markovian approximation ( E =0)

of the asymptotic case because

H (Wzky,v) = D () V.16

The knowledge of the expansion of the non-
commuting operators in the exponent of ( wi.is )

—Ak"ﬁ A.k P “-lct X‘a .- ‘!é"[ 25'2 VI.IZ

RJ (1.0) e e e

-
-
-

which for F = ¢ =05 gives

we immediatly obtain here in the same approximation:

A .
— -itkvz .—zm____.______—H &(w ky,v) - «'5..; kA(H.( +Hd4'YDA'.
=2 2 Vg d
U k(.‘lo) LR < (-5
. kv
o -2kl ). HD vI. 18
e e } |
_ The solution vi.1Z can thus be written as
[ TR S e e e i Yeage: S Ey e mmﬁa
Lo ~ dlwky)e =;’”“ itk (Herd.)
§ ,w): |ds e e v e f
; . ;
Rk e i

\

b 2 gk(\_l,\:w) vI. 25,
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VI.C. Comparison

When compared with the expression Vi.41 obtained
from the Green function, this last result has the advantage of
taking into account the dependence of H upon both (-k.v
and v «» The Fourier transform in vé]ocity space, which
has been introduced to integrate the Green function actually
needed to geglect such a dependence. For*this reason, one
can say that the simple result obtained from the Green function
from the non-asymptotic equation is equivalent to the approxi-
mation

H(w-ky,v) — D

performed in the result of the asymptotic equation if we futher
neglect the non-Markovian contributions ({.e. Eq. M.2s where
d,0,¥ 8 are given by M. 12-15 with F =0).

':' ,o, = =

In conclusion, we have shown that the approximation
used by HORTON et al. to calculate the Green function Viy in
the case of the non-asymptotic quasi-linear equation is
actually the same physical weak-coupling approximation used iIn
the propagator formalism. However, the use of Green®"s functions
seems to be more delicate if we would like to take into account

- the tensorial feature of g
= but mainly i1ts velocity-dependence ( and thus the non-
Markovian and non-asymptotic features).

Neglecting these two effects is equivalent to. only
consider the asymptotic and Markovian quasi-linear equation. On the
other hard, the propagator technique allows one to take iInto account
= the tensorial feature of ? and g’ in the asymptotic case
( or of H in the non-asymptotic case)
= their velacity dependence (i.,e=. average displacements effects:
seefi.1?-18 ) and non-asymptotic contributions in the case of the
tensor H
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SECTION 4

A N8NV KINETIC DESCRIPTION FOR TURBULENT COLLISION INCLUDING MODE-COUPLING

J, H MISGUICH and €. M. TCHEN

ABSTRACT

The micro-dynamical state of fluid turbulence is described by a
hydrodynamical system. This is transformed into a master equation in a
form analogous to the Vlasov equation for plasma turbulence. When the
total distribution function is decomposed into a mean value and a
fluctuation, the evolution of the mean distribution satisfies a transport
equation ,called the kinetic equation, and contains a turbulent collision
that represents the statistical effect of the turbulent fluctuations,
while the evolution of the fluctuation will form a transport equation ¢gp
the turbulent collision. Themechanism of this collision is investigated.
The report compares our theory with the clump theory of Dupree, the
renormaliration theory of Misguich and Balescu and the direct interaction
theory of Kraichnan.
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INTRODUCTION

In plasma and fluid turbulence, the main average
effect of the fluctuations consists to enhance(@ replace) the
role of particle collisions and to enhance consequently the
transport processes ( turbulent diffusion, turbulent viscosity,
4.5,9, ...k, The origin of such phenomena is generally referred
to as "turbulent collisions™.

The starting point of theoretical descriptions are
the Navier-Stokes equation for the macroscopic description of
fluids, and the Klimontovich equation for the microscopic
description of plasmas. The latter reduces to the Vlasov equa-
tion in the case of "collisionless” plasmas, which behave like
an 1ncompressible fluid in phase space.

The most widely used among the theoretical descrip-
tions of such processes are the Direct Interaction Approximation
(bIa) introduced by Kraichnan in fluid turbulence, and the
Renormalized Quasi-Linear (RQL) approximation introduced by
Dupree and Weinstock in plasma turbulence. Both approximations
have been shown to be analoguous. /1/

Similar formalisms can thus be used to describe
both kind of turbulence, and we will adopt here the language
of plasma physics. The results can immediately be translated
in the fluid language by replacing electric field fluctuations
by pressure gradient fluctuations

Turbulent collisions effects are described in RQL
or DIA approximations by means of a Lagrangian correlation of
Tluctuating fields between two points which are separated iIn
space and In time. These distances In space and iIn time are
are actually related to each other by a complicated trajectory
which involves all the dynamical problem; in RQL or DIA this
trajectory reduces to an average diffusive trajectory,
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The purpose of the present work is to analyse the
effects of higher mode coupling terms on this approximate
description. Dupree for instance has introduced so-called
"beta terms" in plasma turbulence, the role of which is to
ensure energy conservation to a higher degree of precision.
Such terms have been proved to be important in drift wave
turbulence /2/.

The introduction of such higher order corrections
has however been made In a rather Intuitive manner : a simpli-
Tied approach is presented in Section 11. Here we derive new
results for turbulent collisions by using a general kinetic
formulation oOf plasma turbulence (SectionIiI)., Moreover we
prove that these higher order corrections already appears
from the non-linear dynamics, even when the non-linearity
introduced by Poisson equation Is not yet taken into account:
they cannot thus be reduced to self-consistency effects only.

Our main result (Eg. 111.14) consists to describe
the deviation of the turbulent collision term from its RQL
or DIA approximation in an exact way. This deviation involves
a generalisation of the Beta terms introduced by Dupree, which
includes here all higher order mode-coupling terms. A new
approximation is proposed iIn Eq. (111.20) which goes beyond
the RQL description; an approximate treatment of this equation
is left for a future work.

Another approach is presented in Section IV, which
uses a simple non kinetic treatment of the Vlasov equation.
Although the resulting expression involves four main contributions
(Eg. IV.24) , we have been able to prove that iIn the kinetic
regime an unexpected cancellation occurs between the last two
contributions, and we recover the general result of the kinetic
formulation.

The consequences of this cancellation are examined
in Section V where we focus our attention on a quantity ¢,
defined as the infinite time integral of the Lagrangian
autocorrelation of fluctuating fields. Exactly like in the
classical case of Brownian motion, we demonstrate here that

J
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in an asymptotic description, C; goes to zero for an homo-
geneous and stationnary turbulence. Of course, when different
scales can be introduced to describe the fluctuations, the
Lagrangian correlation of the small-scale fluctuations remain
inhomogeneous and non-stationnary, and this avoids the
corresponding ¢; to vanish in the asymptotic case. In such

a scaling description of turbulence, ¢; can be used as a bare
description of the turbulent collision : higher order mode-
coupling terms then will introduce a dynamical shielding effect.
This description will be developed in a subsequent work where
an explicit calculation of the intrinsic or shielded turbulent
collision will be performed.
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Ir. TURBULENT COLLISIONS AND HIGHER ORDER TERMS

II.. Schematical.lntreduction

The recipe for the introduction of the higher order
Beta terms can be summarized as follows. The Klimontovich or
Vlasov equation for the distribution function £(x,v,t)

with
L:-Y.-v -1 E()_‘.\H'l
- T s v
(v =3 » 0 IS the charge and m the mass of the particles,

%
E 1n plasma is the electrostatic fluctuating field) can be

separated as usual in fluctuating and average parts:
W pelbratts 11.2
i -t !
fbk F - LF +L¥ + 3‘-'?' 11_3

with the usual notation
fzLF>=hF
and B=1-A denotes the fluctuating part of everything to its
right.
The free propagator in the average field‘E is
defined by

Vo Up (Eite) s LLE) Uyltbo)
11.4

In the simple case of linear trajectories this reduces to

Vo [k ¥e) = =T Ul o) s
and the solution is a simple finite displacement operator in
X-space: = (bXo) Y.V

UQ (t‘ko) = e

11.6
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Solution .of (IX1.3) can be obtained as
! k YT Yooy
Fmgjkgw U, k) [ L@t velwper)
or °

} l-+ } L
t = Uy x LU BLE] II.7b

where time dependence is taken into account by the notation #
which denotes the time convolution. This solution is formal
since 1t is an integral equation which remainsto be solved.

Substitution of (11.7) into (II.3) 1is equivalent
to an iteration and gives

VWP LF +UT +BUUxLUE +BUU #BUF

II.3b
A simple handwaving argument can be applied in the last term
in the r.h.s. :in BUF =U ' LUE'D + the projector

B means that the average has to be substracted from L'§'. In
the final calculation of average quantities the L' cannot

be taken in average with F' : simple averages involving this
last ' can only be taken:

i) either with the other L' which yields

LU U *#L DT

i1) either with other fluctuating quantities which will appear
to the right. This case can be schematized by an arrow

LU Vo el €D
—
which indicatesthat L' is operated by U), but is excluded
from the bracket average.

The last term in (II.3b) thus involves at least the above two
terms, and (II.3b) can be written:

UG T +LUT +BUOHUT tLUU AU+ LLUx LD

P A A NI N 11-8

Both underlined terms can be used to define an average renorma-
lized propagator V° and the solution "writes.

£ oo VT » BT+ () |

II.9
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When substituted into (1I.2) this result allows us to write
the average equation

WF=LF + <UTFLDE + (UV*BLU*L'DF
VA LATAF SRR VAR IR
A A

11.10
In the r.h.s. the first term describes free motion iIn the
average field, the second term a turbulent collision term
(here in the weak-cdupling RQL approximation). The third and
4th terms are higher order corrections to this approximation
of the turbulent collisions. The complete expression for the

collision appears to be in this handwaving derivation:
CHs{UEY= LU VHUNE + LUV B L UxlU'DT
10 ! L' !
P LLUVOL U LR

11.11
Actually the last term ( equivalent to the Dupree Beta term /2/)

is of the type
LU (UFY

which involves the complete CH:) - Eg. 11.11 still remains an
integral equation for ¢ , which describe some kind of

renormalization or shielding of the RQL-weak coupling appro-
ximation given by

Ca= <L'U°*U>f

The purpose of the present work is to elucidete the role of
such higher-order implicit terms in the equation which defines
the turbulent collisions.

This above schematical introduction of the higher
order terms can be made slightly more precise by considering
the wave-vector dependence in Fourier transform.
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For the case of a turbulence which iIs homogeneous
in average, we have a space-independent average function

£=Fon

and '[_____!.-q

and g J O
L': T E-sm @V

since we have no average Vlasov field. In this case (II.3a)
writes

- ) 1
U Fl=-ikyflly + L EE) + Jdk BL®F

11.12

In order to perform the iteration, we write the formal
solution for ?7L_k, . Neglecting as usual the initial value
term, the asymptof?c solution writes

2
~(tX) 4 (k-K")¥ ) - ! ' (t) ]
1 ' ! ' I
F!Js'm = |t e [L,E_‘,_ﬁ’ & t]dk" ® L‘s‘fg ) F‘.‘- kLl
/. II.13

and (II.l12) can be written in the form:

W f'!(kl z-dilky \:',s(k) + L’E(k)-?(g)

b, < TR
+j¢'s‘ Bl _(b|dt' e [\.‘ Leyt L) fjdls E:th‘t )§ )

ek
-ce 11.14

Let us consider the structure of this general expression. In
the last term, the first B to the left prescribes the fluctu-
ating part of what follows. (The integral j&k" can be replaced
by the discrete summation %S with appropriate factor (‘2"!./!-)-s
which are ommited here for cfarity)- In a homogeneous system
this implies k # 0 . In the same way the second B implies
k#k' - two values of k" appear to play a special role:
1) k'=k which gives L', (¢)§.l.(t)
which is analoguous to the DupFee Beta term
11) k"= -¥' which gives L'_,..(1)§,(¢)
i.e. a phase coherent term.
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Neglecting higher non-coherent mode-coupling terms gives:

i bl = -<kv R_‘_“ﬂ + L‘%(H?(H

Co { k') -— \ ' . . . | . -
3 Jo 2 [pgafen gl o) <R
gt ° - D2 -

II.15

Here the \5‘ summation IS an approximate form for the complete
mode-coupling term ®BUE' in 11.3a or 11.12 :

B = 2 U [ F P LB » AN

Let us consider the structure of this equation:
= The term { L., ?:k.>appears as a modification of the source

term in f - it has been interpreted by Dupree as a modifica-
tion of the average function { into an "effective" average
function :

_— - 1
F = ¥ + 4 L’S‘F'%'>
- The term <L'\:' Lik,\) appears as the weak-coupling approximation
of the turbulent collision term ( coherent part).
In Ref. /3/ these both terms appear as
F ! ¢ ! $ k
' | ) -k
BUF— Gy = € Fy + fov Lo Cleew
° II.17
i.e. a phase coherent term CF¥'( turbulent collisions) and

the Beta term ( C¢ ). This corresponds here to the turbulent
collisions

CIFL « 2 (L Ue L) Fy
and the Beta term

’C !
F\t' L (¥) C‘f;(t.w .-Jdk' 2. Lk (t) U,lkwx) € L"g(u ;_S,w)>

kl
2 = IT.19

11.18

! . . "
The role of the term Lk. L; “‘F in Dupree's description 1is
not apparent . -
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ITII. EXACT XKINETIC RESULTS

The appearance of turbulent collisions and higher
order terms can actually be described more rigourously by
using general expressions which have been obtained in the
framework of our kinetic theory for plasma turbulence.

III.A. General_kinetic_equation_for_turbulent piasmas

In the kinetic regime of long times the exact
solution of 11.3a for the fluctuations can be written 74/

t —_
faw Aluk) L'(8) Toand)

-0

¢ (v 111.1

[Br Atk Vi Foamts

o

This is a basic formula which describes the fluctuations in
terms of the average distribution function. It holds in the
kinetic regime of times long compared to the correlation time
of electric field fluctuations; in such regime the influence

of the tnitial fluctuation has been shown to vanish exactly /4/.
Here A is the Weinstock propagator defined by the homogeneous
part of Eqg.(II.3a)

9, Albke): [Tio + BUWBT ALLY)

I11.2
i.e. /5/ : : ‘;y[i:lt'HBL'IU)]
to
/\“:,\:o): X_\_ r=
111.3
wen Alboke)e 4« AlY) |
111.4

and where )&Lis the time-ordering operator /5/ which prescribes
that in the expansion of the exponential operator in power of
its exponent, the various operators have to be time-ordered in

order of decreasing times when ¢y ¢
o
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Solution 111.1 can be checked immediately: by using (III.2),
Eq. (111.1) gives (II.3a) (see 111.4).

This simple exact solution allows us to write
the average equation (II.2) as

VW= [Tw+a] Fie

III.5
0P ng LU Albkgy L kn) V (kb
equation itself: ]
|5, Viera s [Twrs 6] Vv
111.7
L. jl;uc\ [Tw)+6tle)]
Vikkys X, e
111.8
This operator allows us to write the exact solution as
Tio - VEE) T
III.9

EXE-B--FteFation
Let us now perform a kind of iteration of Eqg.(III.1l).

A simple integral relation can be obtained between the Weinstock
propagator /\ (rrr.2) and the turbulent propagator (III.7) :

/\'. V +\7*LE>L'-G] N = .\7 r N\ *T_BL'-Gl—\T

III.1l0a

3
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i.e.

Al Y-e) =V (tre) +Fte V (E}-0)| BL(H0) - Gll-.o)] INTRES

o
IIT.10b

This integral equation can be deduced from (111.2) by
treating (®BL'-G) as a perturbation:

Ve A\ = [I-re + )7!51.'-6‘_,]/\

By substituting (111.10) into (III.1) we immedia-
tely obtain the following iterated formula for the fluctuating
distribution function:

Pl F;z V(t}e) L'(t) f ko)

, 3 [Re Vitra [otin crai) Ao L ten FO-)

Jo o

111.11
By substituting this exact solution in (I1.2) we find a new
expression for the turbulent collision term:

ClyeLUF)= GleIflt)= Fn LU Alkke) L'[Lz)>v Dat) Fey

(-]

111.12
which is given by

CLE) « Jif’n; LUW) V (kEa) L k) FLED)

o

[ d
+ Sd’t

b

Fs LU ) V{E}8) [BLtt-5) -G((-.m] N\ (L8,}D) L’lm}?u.z J

o

111.13
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Introducing the variable $=: %-& we have

% (2 >0 P L )
[d‘chLe s A&sz :Jd.e ds
° 0 ] -] o o

and finally the result can be written as (8 = % ):

C(4) - Fr. L) Vit}z) L'ke)) Vet T L)

+Fz, Fs U1V Lk ) [BL(G-)-6 (ka)] ALk b-3-) L't F-r.-s))V

(]

(t-3.5,k)
Fle)

111.14

The first term is nothing else than the RQL approximation of

the collision term, which has been developed in plasma turbulence
in analogy with the DIA approximation in fluid turbulence/6/.This
approximation is obtained by replacing in the exact expression
(111.6) the fluctuating trajectories described by the Weinstock
propagator /A by the average turbulent trajectories described

by the turbulent propagator v . The second term in (III,l4)
takes into account the deviation from the RQL description, by
means of (®\'- &)

In order to make a bridge with the more intuitive
calculation of Section II, it is interesting to put this
correction in another form. From (III.l) we have indeed:

F' (ko) J:s Alts,tz-s) L' (F-5-s) V (Fz-s, b -v) \?Lk-z-)
III.15
Since

;r:(_\"c-ﬁﬁvu-t-s,\'-m‘) .F-(,\-z.) :\7(%-55,\:) ?U:]

111.16
we can write (III.L4) as
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ClE): GIEYFLE) = Jd'a LUt} ViEks) U tea )V, b) FLE)

o

+ ﬁ,‘b s “:N.U:,Lr.) EL’(L‘G)J:s Az Y-2.s) L’(l—-b-s)> \7{}.;4,’:)?“71

(-}

- (:n LU ViEye) Gles) flikary
- 2 111.17

When compared with 11.11 the present exact result (111.17) can
be analyzed as follows. The Tirst term is the RQL approximation
of the collision term, while the first term in 11.11 only
represents the quasi-linear result (A = U, ) . The second
term In (111.17) i1s a generalization of the second term of (II.ll)
.2, a term involving at least three fluctuating fields; here

A remains a fluctuating quantity which may introduce corre-
lations between four fields, z2.s5.0. The third term In (III.l7)
is the general form of the Beta term obtained in (II.11l). The
present general formulation avoids using approximate treatments
of averages like that denoted >y the arrow in gg.(II.ll) and
avoids elimination of higher order mode-coupling effects.
Moreover it allows to exhibit the implicit feature of this
higher order Beta term: the deviation of G from the RQL appro-
ximation of & involves a Beta term which depends on &
itself; this was already apparent in Eq. (rr.11) where {LUf"D
was given in terms of (LU'§') .

In summary, we have shown that the turbulent
collision term involves a first lowest order approximation
(Quin 11.11, RQL in r1I,17) plus higher order terms which
have been calculated. This latter correction involves an
important , so-called Beta term, which actually depends on
the complete collision term ( "implicit" terms ).

Two levels of approximation can be used to
describe (111.14).
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1°. The RQL approximation for & is solution of the
non-linear equation (replace A by V  in III.12):

> Iy T oy U(ha\V (et
SeaL © sz LV ) Vo Lebed LUk [hat)
o III.18
ith -
"’ _ J bkt LLIE) + Goldth ]

b3
V. (Ehey: X, e
gL + IIT.19

2°. Higher order corrections can be obtained by replacing

A by V in the iterated formula obtained in (III.14).
In this higher approximation we have

C(t) = F& L ULy Vikba) ULk ViE3 ) Lt
[+

*j; S:S <L'(k) \7(‘.“.,&) [bL’(LB)' 6(‘-,;’] \-]C‘.’."l "03’9) L’ L"-ﬁ-s)>v (,’.3.5, t) FG

-]

| 111.20

This equation is the main tractable result of the present
work, 1t represents a highly non-linear equation for the
collision term of the average equation

Ve F=LF +cty
described in an approximation which goes beyond the RQL

description. The calculation of an approximate solution for
this new closed equation is left for future work.
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Iv.. NON-ASYMPTOTIC TREATMENT FOR TURBULENT COLLISIONS

An integmail equation similar to (111.17)
for the collision term of Eq.(II.2) has been obtained from
the Vlasov equation directly /6/. We will show here that the
physical content of the different terms appearsto be quite
different.

The fluctuating equation (II.3) can be written in
the form

[ ! e K
W e LT IE + LUF -<UFD
Iv.1
This form naturally introduces the exact propagator L defined
by

Y Ulkko) = LTee) & L] U ko)

i.e. | I:‘.dk: LE“:',_'_L'“:!)J
U (\:.\:o): x+ e °

V.3
Contrary to the Weinstock propagator, the exact propagator
U does not prescribe all intermadiate states to be fluctu-
ating ones: U allows "transitions" from an average "state" to
a Fluctuating one, and vice-versa. The Weinstock propagator A
(III.3) iIn turns describesthe irreducible propagation of
fluctuating states /4/.

Solution of (Iv.1) can be written ( neglecting
the initial fluctuation):

¥| :(J *-L! i - U *_élLlFl:>

Iv.4
i.e.

f'{t)zjat\:’ otk | LwrFe) - Ll ?'“’J>J
to

Iv.5

a
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E.to —
U= Cl) = sz LU UCktz) U(ke)) flEs)

9

- J:I:o(L'lt) Uty C(k-3)
Qe

IV.B. Three contributions to_the collision_term.

Let us transform Egq.(IV.86) in order to introduce
explicitly a first term which in the asymptotic limit (tg =2-%)
gives the RQL approximation. For this, we simply decompose

V=0 sV v

where the average D of the exact propagator actually tends
to the average turbulent propagator UV (111.8) in the limit:
of time intervals long compared to the correlation time of
electric field fluctuations. Then (1V.6) becomes:

Cli = C lb + Cole) v Cplt)

Iv.8
where the three contributions are given by
‘.‘-*. — hlysngd <y B
C$La1=Jdc LU ) U (ko) L (hs)) FLE-2) =23 Cra .
Q Iiv.
tto , , =
Cg k- Ld"’ LU V' (kha) L)) | Lhe) IV.10
t.to
Co o ..Jm, (U Uk CkT)
= s IV.11

In order to build a bridge between the present
treatment and the asymptotic results of Section III, we have
to calculate V' in terms of A and V . For this, we have
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to derive from the definitions of the propagators some simple
exact relations in the form of integral equations.

Let us first derive the (integral) relation
between U and U,

U=U°+ UO*L‘U

Iv.12
which i1s readily obtained from (1V.2) and (11.4). We have to

note that in such relations, the two propagators in the second

term can be equally inverted since both formulas give the same
iterated explicit solution :

U: i (U,')f'--')M Uo

AT

V.13

Let us now express U, in terms of V and U,
From (III.7) and (II.4) we have:

\7=Ua+ V*G‘UQ

1Iv.14
Combining this with (IV.12) gives

U:U, sV LU -V #60, xL'U

V.15
Let us also express U in terms of A . Eq.(III.2) can be
written:

W N :Lt-\-L'-P;L']/\

which gives

A=U - U%AL'A

Then 1V. 15 gives

V.16

U:U, +V #L'A+ Var LU ALUA <V % GU %LU

1v. 17
Here Uy in the last term can be eliminated by “using (IV.12
and 16)
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UgxLl'U:U.Us= A+UxAUA-U,

Iv.18
and we Ffinally obtain
UsU, +V #UA +V #L'0 xAUA -V %6 [U-UJ# L'V
IvV.19a
U:=U,+V %LA +V xLUAAUA -V£#G[A-U,+U »;AL'A]
IV.19b
The fluctuating part of U can thus be written as
U': BI,VxL'A +9 xL'U #ALA -V #6A -V #GU xAL'/\}
i.e.
’U'.— ValmU.6]n +V x[nL.6]U xALA t
Iv. 20a

or, explicitly:

U'(k ko) }-:Le \/ (k }-8) [BL'(LD). G(!:-D)] N(F-8,k-v)

o

k-
¥ Fts \7(&.\-.9)[&'(&-0).G(E-GJ]st Uk, k) AL(Es)A(}s,t-2)

o e
IV.20b

IV.D. Asymptotic_cancellation of Cuyr

From the exact relation (1V.20) we can write the
second contribution to the collision term (1v.10) in the form:

Ete - -
CI(H s Jd‘G <L’(ULU +U'J L' “:-Ta)> F“'J'): C;Ea t C_r_rz
° Iv.21
with
E-\'O — -
Cq (8): jd'& (L'(UFB V(tks) [BLo) .Glt-s]]ALRE, bRy L (he)y T be)

e ° IV.22
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kYo T _ 4
CiJI (E)zja\z (L’lt)st\I{m-e) Ust_'u.o;.eu.ag ds U(F-8,t-5)
2

© [
V.23
The total collision term (IV.8) thus writes:
CVC () + Cq lby + Cp () +Cglt) .

Actually one can prove that, in the asymptotic limit, two
last terms 1In (Iv.24) exactly cancel (see Appendix) -:

As. As
(t) =
CI; (&) + C!I ) =o©

V. 25
This implies that we have asymptotically:
C (&) —> fua Crlt) + Cop (t)
l‘o»-a[ * Fa ] 1V.26

Now this result can be proved to be identical to
Eq.(III.14) obtained in the asymptotic description. This
identity can be proved as follows. From (1V.9) we have indeed

b Cplu. JZ{; L) VL v0) Ltk Fkn)

Oay 00 o

Iv.27
which is indeed the first term of (IIX.14). On the other hand,
we have from (1V.22):

L&k Cy lt) - Fz gﬁe LU GV (E ) [BU.6]AL-8,V-3) U'(h)) F(H-5)

o =00
o= - o

: J:a (3 (U VELeRLGe) 6L A9, +-8-5) L (hp-s)y | (1-8-2)
lo

9

1V.28
which i1s identical to the second term of (11x.14). This achieves

the demonstration of the equivalence of (1V.26) and (111.14).

We have thus seen In the general result (1v.24)
that in the asymptotic limit of a distant initial condition,

last twp terms exactly cancel. This means that in (IV.6) the
last implicit term is cancelled asymptotically by a part of

ramn: v B — s,

3
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the contribution of U' in the first explicit term, and we
remain with the asymptotic result given by the kinetic
formulation (IIX.14). This remains a highly non-linear equa-
tion for the collision term, even in the approximation (III.20)
where A has been replaced by v .



4-22

V. ANALYSIS OF THE LAGRANGIAN AUTOCORRELATION OF FIELDS.

- . Gk e D e G . G Gas S D D WP G G W W VN3 S G NS A o

Let us consider the exact relation (1v.6) which
has been derived for the turbulent collision term from the
Vlasov .or Xlimontovich equation:

ClB LUPY = € () —JZ\? {Ut) Utk C(hp)

o V.1
where the first term C.is defined in terms of the Lagrangian
correlation between two electric field fluctuations along the
_exact motion of the particle, which is described by the
propagator U

b-to -
C (¥ ‘me +CIlt) :Jd‘s 1M Utz L'(;.;)>$(+.z)

[+

k.to —

AT .st <E'(g,’c)’ U (ko) E'(ag,\:-b)>-l F (xwvte)

oV | = - oV
v.2

This autocorrelation of the electric field fluctuation can
be visualized as the correlation between two points of the
space-time (x,t) which are defined by the exact position of
a particle which is at point X at time t and at a point

(ks ) =U(t}z)x at time Et.3 ( see Fig.1).

t-z
x(t-z)s Uk, F-2) X

The time integral of this autocorrelation is fully similar
to the well-known autocorrelation of fluctuating forces , which
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appears in the classical description of Brownian motion. The
friction coefficient of the Langevin equation

SE._% puxit)s Fib)
at mm L h -
V.3
iIs related to the diffusion coefficient by the Eintein relation

D. T
7 v.4

and is given by the time integral of the autocorrelation of
the total fluctuating force F(t) ( see p. 262 in /7/):

4 T
3 A J‘“  Elb) E(bva)

Here the upper integration limit? is larger than the
correlationhme 3,0f the fluctuations, but smaller than the
relaxation time "“/‘f :

[ ( T < Cr= ’?‘7’

V.6
The point we want to stress here is the following: the exact
autocorrelation has a strong peak near the origine (&£3.)
but also a long negative tail:

-3 -3 (2k+3)
- 2 2
CE(ELElm)s 65k S(u)-’-’%“'g TiE)e ™ (o)
v.7
(seeFig. 2 /8/)
i < E(E).E“:#'G))
3%%T
e
-y kT _\fﬂ — >3
"
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which makes that the total integral ( from zero to infinity)
of the autocorrelation is actually zero:

J:z LER).F(t43)) =0
A
The finite integral however

r
T jd'c £ E{H-E(hb)}
°

V.9
is a function of fr which reachga quasi-plateau value at
(seep. 261 in /7/)

»I(r)
X% o I

> €

NG e R

i Fig.3

VB-=--Gerckaktesul€

The point we want to show here is actually very
similar. Let us consider Eq.(v.l) and calculate the second
term. From the exact equation for U we have:

V= LU v 10
thus _ -
WU :=LU + 4LV
V.11
This can also be written
LUmU [T, - D] Uk
V.12
When substituted into (V.1) :
k . ‘
C(b)- CL(t) z -Jdk' LL'(¥) U (klt')> C(t) = Cmﬁ:)
V. 13

[-)

3
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this gives an equation where fTluctuating quantities have been
eliminated:

2 - o=
ol = - [cw [2 - Lw] Tk el
- to V.14
By using partial integration

L k
fae2 niw <l }dk'HlEnW _ H(tY)
ko ok ot ko V.15
we obtain

- B, o~
i) _ ' ,E E
Cgltl- Cl - [(.;t Lm] jd} Utkt) elt)
° V. 16
By this way we have proved that

- ‘
C (E) {%E ut)] wa UlL,E) Cl)

This is an integral equation for C in terms of CSL which
is given by the time integral of the Lagrangian'autocorrelation
of the fTields. Here the integral operator has to be inverted

in order to determine C in terms of C. . An important-
conclusion can nevertheless be reached for a particular
homogeneous case.

V.17

—— e v e ey oo ot Yo e o S s i S T S e B i o R o S o e L et 400 AT 2 A 0 D U S e UGS W . N T o WD M WD M s S - S

In the asymptotic case ( éb —»-00 ) this equation

becomes:
Cﬁ*ﬂ) _,)(4?, { L'(t) ULt t-3) L'U-r.)ﬁ(h.) : {}t- L(eﬂs‘m v S(l:,l:-?a)c(&-t. )
° V. 18
e Y [Ti)+6eel]
— i;(k k ) )( e
= $-5 )<
bkt : .15
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In the stationnary case V(‘."-‘b):V(c)is t-independent, and
Clkx) becomes time-independent. We remain with

As - 2
C . (b)) == L) [du V(@) C
JO - v.20
For homogeneous systems, € and V are x-independent and
L ==V (no average Vlasov field). We thus reach the
result that for an homogeneous and stationnary turbulence

the infinite time integral of the Lagrangian autocorrelation

of fluctuating fields vanishes in the asymptotic description:

r Vv

- c ;s setecate | G}. {E'® U(k,*-v)?_'ll-vl)% f(3) —>o0

AV

although the total turbulent collision term does not vanish.
This result is very similar to Eqg.(v.8) for Brownian motion.

V.D. _Conseguence for turbulent collisions

This result implies that
A A LY
CIs 3 C_ s- CLAS - C— s

V.22
It is interesting to combine this result with (Iv.25)
Ag Asg
Cp =-Cl=-C
T2 = V.23
When reported in Eq.(IV.24) this gives
Ag As Ag
cM(r) s CF k) + Cplb) + Cy (&) + Cor (¥
C——\(-———‘“
» o
. C (k) - Cly)  +Clb
v.24

This means that in the asymptotic Analysis of the four terms
appearing in (Iv.8) for the collision term :




4-27

1°) Iast(}m Contribution (IV.Il) goes to the complete result:

c,;su):-jiz, LU ) U' () Clbs) = CLt)
® : |

V.25

2°) The contribution C’.‘I (IV.10) goes to - CI :

SO JZT. LU () U' (L ey L' C0) T ks)
o

- [ds Qw Dt L (ko)) Tlka) = - ottt

° | V.26

3°) .The total collision term is given by the result of the
kinetic method developed iIn Section III

; A
.-y -k

1.2,

= [d QO VU T (b T8

+ Fl; Fs (LY V ik} [EL' (k) - 6019 AlF3,} 5 -5) L'(kv-s))-F( S Ry

V.28

These equation (v.25,26,28) are three independent relations.
The importance of the last result is that it allows us to
describe the turbulent collision term by a modification of
the RQL approximation. The contribution of & in (v.28)
represents the equivalent of the Dupree Beta terms, here in
a gen=ral form. Their Importance has been proved for energy
conservation. We will come back later to this Important point.
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APPENDIX

Let us prove the cancellation of Gy and %
the asymptotic case. We calculate (1V.11)

Cm="

—

Az LL(E)U' (k) Clh-2)
° A.l
and use the exact asymptotic expression for € (III.12):

g-t -te

SICH I fdt (U by [ B Al b3 )L‘(W)}FU )

T-5 00 o

[
A.2
Let us modify the variables:
T (T T (3 T (&
fahjdz,' < Jd;'jdz = Jd‘a' ds
0 T o o © o A.3

and eliminate € by the new variable $z%.% We obtain:

Tee

e Qi -Ju lds LYV th a4 )L ws)/\ﬁ oys b L-s L3
o]

A.4
Let us now use (V.20b) for U'

U' (he'es)= Jtd'é V(hy-5)[BU (r-9)-6(1-5)] { A(F-8,F-%48)
e -5 °
v } ap U5, kop) AL(kp) /\(ln},l:-'&’-rs)}

& ’ A.5
The bracket can actually be related to the exact propagator

v by means of (IV.16):
t-e

U (k-8,kz'ss)= A (k-5,t-v'ss) +Jdk' Ut-8.) AL EIALE E-3'+)

t.v'+¢

%ls
dp UCko,t) ALUCEE) Alk-p,Fo'ss)

o)

= A (!7-9,1:-'6'-}5) +

A. 6
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(wherep=E.t' ) . Substituting (A.6) into (A.5) gives

BeS ’
Ul(é ,\'-6'-}5) :J“d o V(E'},Q)IBL'(}_Q,.GUPQ)] U CLQ} l-s '}'5)

(-] A.7
When sqgbstituted into (A.4) this result allows us to express
Cf;As as : ( change &’ into% )

T (G-S S e
Catlt): b Fa stjds LU )V (Er8) [BU(r)-6(ko)JU (8, 545) >
9 -

Tase

o

£ Uhase) Alboss,ba) L'thay > FLbe) rs.

On the other hand, Cl\:2 given by (1V.23) can also be transformed
by using

T (% gezz' (& (&-P T (3-3
st Jd_l, Jdg Jd'&' .'Jelt' st
° & ° ° °

Q

A.9
and we obtain ( 2'—»s )

T 5 - | |
Cy,lH) < jda (utJJ:SJZE \V/(k,}-8) [}51}(\.9).6(&9}]U(}.a,\--z+s)>

o ¢

LU (russy AChsssra)l (21 Flhs)

A. 10
By comparing with (A.8) we have thus demontstrated the result
(Iv.25) :

Cgile)=- C R )

= j:‘c Sis jzkss LU (L)Y (& )-5) [BL (). & ko JU(t-8 ,¥-t,+s)>

2]

=] 2]

L U (F-n4s) Alhsss,b-a) Ly FU2) N
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SECTION 5

SPECTRAL STRUCTURE OF TURBULENCE

IN THE STABLE ATMOSPHERIC BOUNDARY LAYER

c.M, Tchen
GRADUATE CENTER AND CITY COLLEGE
OF THE CITY UNIVERSITY OF NEW YORK, N.Y. 10031, USA
and
SE. Larsen, H. Pecselli, T. Mikkelsen

RIS® NATIONAL LABORATORY, DK-4000 ROSKILDE, DENMARK

ABSTRACT

The hydrodynamical equations of turbulence are transformed into a master
equation for the velocity distribution function. A group-scaling is introduced
for the closure. The spectral balance for the velocity fluctuations of individual
components shows that the scaled pressure-strain correlation and the cascade-
transfer are two transport functions that play the most important roles. V¢
derive this correlation and find a power spectrum %ésfor the horizontal components,
while the. spectrum for the vertical component drops rapidly by going to the large

scales.
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In a strongly stable boundary layer, the spectral distributions of the
large scale horizontal components take the power law k73, while the vertical
component decays rapidly toward the small k values. This spectral hump in the
horizontal components are investigated here. We use the group-kinetic method
of closure developed by Tchenjl Instead of the customary Fourier decomposition
of a random function, we perform a group-scaling as a coarse-graining procedure.
We replace the hydrodynamical equations of turbulence by a master equation for
the velocity distribution, and exploit its advantage of being homogeneous and having

less  nonlinearity, since the turbulent velocity IS now an independent

variable.

11. BASIC EQUATIONS OF ATMOSPHERIC TURBULENCE

A.  Microdynamical State

The microdynamical state of atmospheric turbulence is governed by the

equation of continuity and the hydrodynamical equations of Navier-Stokes, as

follows:
76’ (1a)
4 o (1b)
edo-vv)a =& 5=t yormy

e
The total function, as denoted by ( ), consists of an average quantity, as

denoted by

and a fluctuation, or a deviation from the average, as denoted by (4'). The

evolution of the velocity il is controlled by the kinematic viscosit'y 3 and
\‘l-\
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a field
~ ~ A
= + [E
&=E+E @
which is the sum of the adverse pressure gradient
- b (3a)
E =-+vV a
E=-5 7P

divided by a constant reference density f , and the buoyancy
-]

- §—§o R 2 - ) i
E =- = ?2 —gz , Z:(Qo,,/). (3b)

The buoyancy is produced by the variable density? under the gravitational

~ ~
acceleration g . If the temperature T and the humidity Q have thelr

mean values T, @, constant reference values T, » Q, » and fluctuations
9, 7 , We can write, under the Boussinesq hypothesis,
A B ’ .
§~5 - (T'*'T; ® _Qo/ )
fo ) _To Q.,

The temperature and the humidity satisfy the following equations of evelutlon:

Y+ iRy v T =0 (5a)

(4+ GV-Hv)Q=0, o

with the molecular diffusivityly .

The system of equations (la), (Ib), (5a) and (5b) describes the microdynami

cal state of stratified turbulence.

B. Group-Scaling of Fluctuations
For the study of the spectral structure, wec will be interested in the Tluctua-
~/

tionsu ,9 ,‘L , Whose governing equations can be obtained by applying the

N —
fluctuation operator ,4_:_:- I-A to (1) and (5), where A ._=< > is the

averaging operator. These equations have terms proportional to the mean gradients
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v vT, v (®)
treated as constant parameters. For the sake of simplicity, we combine the
temperature and the humidity into a single variable 42/‘, called drift, such that

VY»’J-—-—V;(-—Z——~%— (7a)

i glz- 1)

The constant coefficient) has the dimension of a frequency, and will always
accompany the drift to form the buoyancy force.

The differential equations which govern the fluctuating functions W and

~

w  can be obtained by applying the operator A to @ and ®). These equations

do not contain the mode~-couplings, unless a Fourier transformation is made.
However, the Fourier form, like the original equations for the fluctuations,
contain too many minute details. A coarse-graining is necessary for a statistical
study. For this reason, we introduce a group-scaling, by means of the scaling
operators AO and A , which compose K in the form:

A=a"+4% (8a)
and the sequence continues by writing

’ - A({) 4

A + A . (8b)

Thus we have the macro-velocity Fluctuation

o A (o]

A w=zuw , (9a)

the micro-velocity fluctuation

’ ’

AT =ul (9b)
the submacro-velocity fluctuation
1) a. ¢
Mg (9, (9¢)

P

and the submicro-velocity fluctuation

7/ /

Ao o= u’ . (94d)
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0 . . )
The goups U~ , u’, « 'have their correlation times

-

/

o K
[P AN (10)

ranged .in the decreasing order of magnitude, indicating their decreasing

coherence.

By the aid of Ao , we transform (la), (Ib) and (5) into:

0/\. _ 1 [} - o -— [ C v 7 11
(3 A £y Y7 ;= W v, FE, —y/? il (11a)
° A 2 o 0 .= e,
('bt-f-/] &-y_/py/wd = —U.Vl- gu/L - 0&7/4 L} Wl; (11b)
7. U,D'-'- o, 17-0(/7- o (11c)

It is not difficult to derive the following transport: equations of energy

in the group form:

$30) = B+ W ED - Ty - B

0 ° ° 0 o .
T la + /6;(0( * Sp‘c( Ko Za(a/ 12)
v 4 o °
W — - & , 13
_?l.‘}t o ) = PN - —It—v W (13)

with the transport functions:

E: z - <U,: uol?> 3 ‘;a( , EHD ="<Wo(o “;)5 MZ( (142

6; = <W; E, > = Y@’x ‘A&o> (14h)

g



oo = E P

.
"

o o
Gyge) v

b= v<(‘7'“:) Z> ’ 5= K«qt ) ) (14e)

Thus we have the productlon functions F« and ﬁ; by wind shear E?lf‘ and
by mean drift gradient V J “ , the buoyancy transport A%;( , the re-distribution
4:; among the components « = 1, 2, 3, the cascade transfers —C;; and ‘7;0 y
and the dissipations Z;w and 2; . The summation rule which applies to.
the repeating Roman indices does not apply to the Greek indices. The transport
equations have been approximated, by treating the mean gradients
Yo . Vi 1)
as constant parameters and by omitting the terms
v
as arising from the inhomogeneity of turbulence.
Unlike the non-scaled form, the energy equations of the macro-group contain

the mode-couplings by the presence of the transfer functions. We also see the

merit in these equations of being able to determine the spectral densities

F(/t) and F (/?) from the scaled energies
L o2 ,L< 02
X0 /Ot'6 Llk) .+ )/éUe L&),
which are in reality the cumulative spectral distributions.

C. Boundary Layer

In boundary layers, the parameters (15) are restricted to the components

— — ) A ”
%W/p Ew- , with W;é%@w/, an

Wy
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so that the energy equations (12) and (13) become reduced into the following

particular form:

1G> =Py 0T

(18a)
'Zl;\bt<u;'2> = pzz - Tzz_ (18b).
z )t <“3 2> = *er;; + }0,; - 7;; (18¢c)
75 w'y=F T, (184)

] [+
The dissipation functions 50(0( . & are negligible for large scale turbulence.

W

D. Kinetic Representation
It can be shown that the hydrodynamical equations of turbulence (la) and

(Ib) are simply the zeroth and first moments of the master equation
vy ED)ia )= 0 Wy, s
with the equivalence relation
fﬂ,j,y) = 5[ v-ifty] (209

in the micro-dynamical state. The master equation has the advantage of being
homogeneous, and its advective velocity does not cause a nonlinearity since v
an independent variable.

Like the hydrodynamical equations, the master equation can be submitted

-
to group-scalings, so that the evolution of }p(t’)

X, \/) can be shown to be

controlled by the transport property.

r
D= f It Elox) Nt) ) e

Is
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called diffusivity, with the evolution operator A(ZL,'[L*_T) . This transport
property attains its equilibrium by a relaxation process, that is prescribed
by _/l(t,f-'C) and achieved by the diffusion of the trajectory at a diffusivity

k" « |If the two diffusivities Jﬁl and %”are structurally similar, a
cr;)sure ig found. -

The analysis of the transport functions (18) will encounter many difficulties
from the hydrodynamical approach. It is hoped that the above relaxational
closure and the advantages of dealing with a homogeneous master equation of

lesser nonlinearity in the kinetic approach will provide with a more powerful

tool €or the determination of the transport functions.

IITI. KINETIC FOUNDATION OF THE PRESSURE-STRAIN CORRELATION

Upon scaling the master equation to the macro—-group, we have
() ? o J b (7] Eo - (22)
L PV, T =YY A é’mm)f =-£3,%
with the solution

-t e
7" - —AO/J'C Al te) & )5 (a3

By taking the moment and differentiate, we find

o

t -
B = -G [ At )0 T

- L(,o o (24)
% “Ia v T/{)u,'( B !
with
_ d t Sfte £ % /) 77[ (250)
P“A?N/W(/dt AYE0 5% T
0
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o t — 2] "
ol e fbe s IR, o

and the divergence-free condition:

VU =0 26

The'differentiation by the operator Vﬂ has yielded the two contributions (25a)
and (25b), and we have approximated the exact evolution operator A by the
approximate operatorU, called the average propagator. Now we rewrite

these two terms in Fourier space, as follows:

,(‘ “’/alv 1/“/4‘5 E (,é”/ ‘k// ( g())[ﬁ)éjﬁz (27a)

<o ofefe €0k A0 g o

v '
h (1:}= -e, - (28a)

Here

is an orbit function due to the unperturbed streaming, as opposed to the orbit

4G
x{t (% - /> (28b)

due to the perturbed path /Q('D/ by turbulence.

function

The V-integration by parts gives

[roud g ok g i
/d"' "Dje"'% \f/(é “) (29b)

Note that the effect of the orbit function! is small as compared to that of
\

z’%(' « The factor)“(k"/has the role of securing the divergence-free condition.
am,
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After the wvw-integration, we reduce (27) into:

l /ZVT/M /4 b (k/< (30a)
oo /

By definition (3a), the pressure

PG) = [dk plR) <

has a Fourier component

P = e ()

lé)— -
(31)
so that the pressure-strain correlation becomes
. | . .
LGyl --L< DVuo>+~L< V“) 2
A BT AR A 62

with

a1y /dw e BK )(E(A)E(A/a } &
]&/2
’Dﬂm{-‘:&% v/ % b, ]){r} V Uy AX
. ol
;{Kf %“’.(5 =~/dvfalk"A U?//’Y<E {~/?/E ") L /)
DI/ ,p?/a/,x(,é/} S kﬂ@/é }ib/‘“‘
D, /d w7 G ’0[/)

= o@/em p/{'m (34a)

(33a)
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o a1 w0
T : [ft»/oua A0, -L“(*/)
=¥ [lefuk 1(itr)g g M

Here)’ is a factor of Fourier truncation,'i): is a diffusivity tensor from the
auto-correlation of Eo - field fluctuations, and ;Dj‘n ,JD/;M are diffusivity
tensors from the cross—-correlations. The. traces of the tensors do not possess
indices. The diffusivities can play the role of integral operators in the

integrations with respect to T and 124 . Note that (29) and (33) satisfy

the divergence-free condition (26), and that

s:, > | 4

is a boundary layer turbulence with the parameters (17). It leaves us the
-3 [ o
correlation (33b). Here the reduction of the diffusivity D into %f and D'}
@m L) ,qu,
by (34a ) has the benefit of confining ourselves to the velocity fluctuations

w’, w , by avoiding the pressure-field fluctuations.

-

The diffusivity b' from the auto-correlation has been investigated earlier by

2 .
Tchen . It is found that for a strongly stable boundary layer, i.e.,

lve) « N as)

o (0]
the effect from % is negligible as compared to that from ID . Here N is the
Brunt-Vaisgala frequency. The latter diffusivity can be investigated by the
same method indicated above. W.ithout going into the details of the calculation

which will be reported at a later opportunity, we expect that
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'70; a4 N ‘Zgl KD (37
The cascade transfer function is
P) 0,2 (38)
Ty, = K (e’)?)

°
from our earlier work. The eddy viscosities areK and K . Hence the

spectral balance (18b) becomes

3Gty = Ny K- Ry o

For a steady state we differentiate (39) with respect to k, and obtain

Mirel K*- K g {20
N)Y?}k"*ZK%‘Z ’:z(é)? 0 : (40b)

by writing

(41)

(v )y =2 f ke  F(K)
o b

The spectrum is thus found to be

F)=aNpi k77 42)

where

« =k K°/K’

(43)
is a factor without dimension. The existence of the spectrum of power law
can be seen from th¢ experiments in Fig, 1. This spectrum differs from the

power law

Falk) = N*k ™ )

suggested in the literature. The two spectra (42) and (44) are in the ratio

el /N < | )
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| l l 1 I | k

1073 107’ 10!

Fig. 1. Normalized spectra F.H(k) ’Fzz(k) in strongly

stable turbulence.



5-14

for stable boundary layer. This small ratio is also verified by experiments.
For a very stable boundary layer, where the conditon (45) is satisfied, the

spectral distribution ﬁ, Cé) is similarly dominated by the balance between

the redistribution and the cascade transfer, so that the power law /g'j is again

valid. With the strong buoyancy, the spectrum f;;(A)decays rapidly by going to

large kK ,without giving the opportunity for )0033(k) to act efficientty.
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SECTION 6

Kinetic Equation of Turbulence

ABSTRACT

The different types of turbulence in applications to the atmospheric
and oceanic motions, the propagation of light, the solitary waves, and the
plasmas have different governing equations. W shall bring them to a
common Liouville form. In this manner, we hope that a single statistical

method can be made available to treat the different types of turbulence.
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I. FLUID EQUATIONS OF TURBULENCE

Many basic phenomena in space, astrophysics, optics, atmospheric and
oceanic sciences are nonlinear and random, i.e. they are in a turbulent
state. A proper understanding of these phenomena depends critically on
our ability to analyze the turbulent behavior. Although turbulence may
appear in different forms and with different basic equations for the
description of their microdynamical-states, there exists certain similarity.
To exploit the analogy in the attempt of finding a common form of equation
of microdynamical state, we first consider the incompressible and homogeneous

turbulence, and write the governing Navier-Stokes equations, as follows:

Qt*f?'?‘wz/_‘? = ‘?f ?"“?‘-‘7/;/ 3=t (m
‘Z(?& = 0. 2)

Here ft({;x/ is the velocity, f IS the gonstant density

in the in::ompressible fluid, »~ is the pressure, whose gradient enters into
the field &. The variable in the symbol (A) represents the total motion
which can be decomposed into a mean and a fluctuation. The kinematic viscos-
ity ¥, which is a transport coefficient from the molecular dissipation, is
negligibly small compared with its turbulent counter part, and can be
omitted in the analysis of the turbulent transport processes. The force of

gravity forms a buoyancy, and together with the Coriolis term may be included

in the E field.

By applying the divergence-free condition (2) to the equation of momentum

A
A
(1), ve obtain the following relation between Eand i, in the form
ta ") “a

('(;x) s (3)

A

v

I m

A A
=VV:ieu =



called the “equation of state”.

The equations of motion of an inviscid compressible fluid are as

TOllows:

WPh +vbiad =fE
tf“’d"'??%{“‘;:)ﬂ ¢ 4)
2,8 fld =0 . 5
A Z f y o 5)
By differentiating () with respect to t and eliminating 3{_?% ,
we obtain the relation
A 2 2 2 A A A _ A
VEE~ ~yferpiid s /2.(1;:() . “

~

A
The diffusion of a scalar ‘-/J(t;x/.with chemical reaction £ is governed
by the following equation
A A

(%E“Y“’VL)Y@ E. ‘Z‘.f? =0, @)

where y is the diffusion coefficient, and Q is the velocity field.

=)

The same equations (7) are \alid for the two-dimensional geostrophic

turbulence driven by a random field E. The geostrophic turbulence has

Pl
- A
70 vx 0 .

with Y = (%x /%y) in two-dimensions.

a vorticity

{1

The equation of propagation of laser light has the form:
0 2/ 2/ o 12 (8)
ch:o——f-Vu +/€(e—/—7lul = 0.

Here (1, is the light field propagation in the z-directionwith an optical
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A
wavenumber%, in a medium of fluctuating dielectric coefficient &€ . The

2
term -Z[(:H represents the effect of the strong light intensity on the

dielectric medium, causing the self-focusing of light.

. o . 1
The equation (8) is called the "nonlinear Schrodinger equation'™ ’
It also applies to the solitons in plasmas, the atmosphere and the oceans.

A
Here (4 js the envelop of the waves.

The linearized form

i 2,2 2 A 2 /A A 2 bz .aL
z(,kr AR (z-/)uzo, wilth Z=-57L+.b7-: (9)

is called the parabolic equation of propagation.?”4

A
Although the equation (9) is linear in W, the product of two random
A A
functions £ (4 makes the problem statistically nonlinear. In the form (9),

the propagation of light resembles the diffusion (7) of a scalar.

Recently a great deal of effort on the nonlinear wave phenomena has

5
been made by using the Korteweg-de Vries (KdV) equation:

7
A - - ) D
Y, + /"= Y L= a—+A ,(0)
where /\ is the coefficent of dispersion. It has been shown that this

adequately describes the long-time asymptotic behavior of wave motions in
nonlinear dispersive systems, and that this asymptotic form can be
derived either from the nonlinear Schrodinger equation (8) or from the

perturbations of the equations of wave motions.



_IT. MASTER EOUATION FOR THE DESCRIPTION OF THE MICRODYNAMICAL STATE OFTURBULENCE

Although the fluid turbulence obeys different forms of differential
equations (1) - (7) for the description of the microdynamical state, their
kinetic representation can be cast into a unified master squation, or

Klimontovich equation: 6
(}% + L) fi(t,)i/y) =0- (11)

Here ?(‘C_‘,x‘!) is the distribution of the random variable & at time Z—
and‘positi.on: , and t.(t,x v) is a differential operator which takes
varied forms depending on th~e types of turbulence in consideration.
These forms are found in the following.

(i) For the inviscid incompressible turbulence as governed by (1)

(3), we have the differential operator

§ My

,L\.E- V-V +E D . 35>/B& . (12)

the equation of state

vE <[4 alsy) Pnv)
and the source

)).(x,v) = YY l/}'/ . (14)

The limits of integration are understood to extend to the whole
available domain, unless otherwise specified. The equivalence between the
two representations, i.e, the fluid representation (1) - (3) on the one
hand and the kinetic representation (11) on the other, can be obtained by

writing

f(f,f,g) = f[}f—b}(t,f)] :

(15)
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With this equivalence, i1t is not difficult to transform the equation of
state from the kinetic form (13) into the hydrodynamic form (3), and the
master equation (11) into the hydrodynamic system (1) and (2) by means

of moments.

(ii) For the compressible turbulence, as governed by (4) - (6), we

have the same differential operator (12) and the same equation of state (13).

The equivalence between the two representations is obtained by writing

the distribution as

Hony)= £ 5[ v-dt)] |

(16)
the equation of state as "
A A
vre = fd\: 2l xv) fﬁ,x,y) (17a)
and the source as
2t xv) = ~ );4- Vv (17b)

By the equivalence relation (16), it is not difficult to transform
the kinetic representation with formulas (11) and (16) into the fluid

representation with formulas (4) - (6).

(iii) For the diffusion and the two-dimensional geostrophic turbulence,
as governed by (7), the Liouville equation (11) remains valid, with a

differential operator

4

L=wv -Yv (18)

PN

and an equivalence condition

A A
:[L(t;x, v) = S[V“/’(t,x)]. (19)
(iv) For the light propagation, we can introduce

t=3k . v=2C4h (20)
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and transform the Schrodinger equations (8) and (9) into

A -
(9t+L)(2:ol L.—--w[v%?({, Zi}] , (21)

with

Q a—LV/QZ(i/“/*ZIdIZ) (22a)
in nonlinear propagation, and

<}’ E-dez(éA—/) (22b)
in linear propagation.

Note that (21) i8 already in a form analogous to the master equation

so that further transformation into the kinetic representation becomes

unnecessary. The same argument holds for the KdV equation (10).

(v) The plasma turbulence is governed by (11), now called the Vlasov
equation, with the differential operator (12). The E - field represents
the electrostatic field with unit charge and mass The equation of state in

the form (13) remains valid, with the source
2
2(x, v) = CO/, (23)

where (O/, is the constant plasma frequency. The distribution function has

the normalization condition

/algf = n ) (24)

where ’;1\«(7;;(/ is the number-density,
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In Table 1, we have listed the different types of turbulence. Their
governing equations are written in the master form with appropriate
differential operators. The self-consistent field is related to the
distribution function by the equation of state in the form (13) through
a source L . This reduction of several types of turbulence into a unified
master equation suggests that they can all be treated by a single

statistical method.

The description of the microdynamical state of turbulence by an equation
of the master form presents the advantages that the equation is homogeneous,
and that the replacement of the velocity function &(t x) by the independent
variable v prevents any terms connected kith the velocity from becoming

-
nonlinear, as found in the differential, operators /l: and the sources (a) - (c).

The only surviving nonlinear term é:‘bi arises from theé -field.
Fortunately this does not require our immediate attention, since it can be
provisionally considered as a given random force until after the closure.
Thereafter, jE, is determined by the equation of state with the proper source.

This nonlinear term describes the wave-particle interation
explicitly, and therefore will enable the derivation of the nonlinear
Landau damping in fluids in a direct manner. The fluid representation may

describe such an interaction only indirectly through a series of moments.
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3. Kinetic Hierachy of Turbulence

In the following lines we shall be concerned with the incompressible

Navier-Stakes turbulence. The microdynamical state of turbulence is

described in the kinetic representation by the master equation

A LA
(\Huz_)f -
with a differential operator
E:X'Y—VVZ+ E.?
and a self-consistent field
“ A
€ =-1 7/

”~

SO that the pressure }3 satisfies the Poisson equation

vp=-f vé
= [4 M) flin ),

by (13). The solution can be written in the form:

P(h) f//dx 4f4—7tlx ~X" A(f;:’} f(t’ f‘.’/ ‘fl)

“r

W calculate

E[tx/:—V/(x LA — %(K,’V')fftfff'/

4-7r{x xl -

by differentiating (29), and obtain

e3f - gluelyr)ffn oz}

(25)

(26)

(27)

(28)

(29)

(30)

31
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by introducing the integral operator

? (;2\:1;?’:/'/ & _'B//dx a/v V(g.r )/'L(X,V) (32)

The term (31)yields a second order nonlinearity in the master equation.

The master equation, which describes the microdynamical state of
turbulence, contains fluctuations with all minute details which are
unnecessary, if not impossible, in a statistical study. A coarse-graining

procedure is the ''global ensemble average'! with the operator

As< S

Such an average is deterministic and may vary with t}x or ﬁxv . The

deviation from this average is obtained by the operator of fluctuation

A= I-A.
where "1" is the unit operator .

By applying the operators A ,2\/ to (25), we obtain:
(b_t +—E-)% f=—J— A‘- Lf = C , (33)
and

(f* z‘_) - ]ﬁ (34)
(A0 =-17

The operators operate on the functions which follow.

or

The equation (33) describes the evolution of the distribution ;’(i}X,V)

in a turbulent medium which presents a turbulent collision E(f"’.:/)
ry o>
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~y -~

representing the statistical effects of the fluctuations Lf upon f Note

that the collision, as defined by

-Atf
e

A é\‘% (36)

C

ll

is the derivative of the Reynolds stress

— ~
A ’E‘je (37)
in the phase space. In this sense the equation (33) can be called the
Reynolds equation in the phase space, and the equation of evolution

of the fluctuation, (34) or (35), is the Friedmann equation, as obtained
by the Reynolds decomposition

I:A‘l‘A. (38)

By this decomposition, we can separate (32) into two components, as

follows:
£ f = %y’ H(tf/") f (J‘/’i;Y')} (392)
_"Té:;bm= g("/"lx,'*”{ 72(/%V;ﬁXZy’} ' (39b)
where

{,Z(tx, X/V’ Aféx‘/)f(f X/‘/) (40)

is the p3ir distribution function. Upon substituting (39) into the
ensemble average of (32) and subsequently into (33), we get the following

equation of evolution off :
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(\t vp-v 7 ) f(Env) = (,7(" "I"W')fi%j‘f}f) f@f’g’)}* C,

CE S Rt

with

ol ) flbuvitaml} w

The dependance of the collision upon the pair distribution function fn

Cltxy)

is expected. If we consider a source of the type (23), we reduce (41) to
the BBGKY (Bogoliubov, Born, Green, Kirkwood and Ywvon) hierarchy of plasmas .

Our general form (41) applies to other types of turbulence too. 7-12

The equation of evolution of f in (41) will be called the Kinetic
equation of turbulence. It remains to determine the collision as an explicit

function of *f , i.e. in the form:

S

where C, is a collision operator.
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